Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38653896

RESUMO

The modern world requires a chemical industry that can run at low production costs while producing high-quality products with minimal environmental impact. The development of environmentally friendly, cost-effective, and efficient wastewater treatment materials remains a major problem for the sustainable approach. We prepared nanoscale cadmium sulfide (CdS)-enwrapped polypyrrole (PPy) polymer composites for degradation of organic pollutants. The prepared CdS@PPy nanocomposites were characterized by powder X-ray diffraction, scanning electron microscope (SEM), field emission scanning electron microscope (FESEM), Fourier transform infrared spectroscopy (FTIR), and ultraviolet-visible (UV) absorption spectroscopy, indicating proper intercalation between CdS and PPy. Consequently, the catalytic efficiency of the synthesized hybrid nanocomposites was analyzed through the degradation of methylene blue (MB) and rhodamine B (Rh B) under visible light irradiation. The measured degradation efficiency of the dye solutions under the photolysis process is about 18% and 23% for MB and Rh B dye, respectively. Furthermore, the recycle test result concludes that the CdS@PPy composite exhibits 91% and 89% of MB and Rh B dye degradation efficiency even at the 4th cycle, respectively. The positive synergistic impact of CdS and PPy may be the result of effective photocatalytic degradation of MB and RhB.

2.
Artigo em Inglês | MEDLINE | ID: mdl-36905548

RESUMO

Copper oxide nanoparticles (CuO NPs) are among the most commonly employed nanoparticle materials owing to their antibacterial qualities, although their primary mechanism of action (MOA) is still not completely understood. CuO NPs are synthesized in this study using leaf extract of Tabernaemontana divaricate (TDCO3), and they are then analyzed using XRD, FT-IR, SEM, and EDX analysis. The zone of inhibition of TDCO3 NPs against both gram-positive (G+) B. subtilis and gram-negative (G-) K. pneumoniae bacteria was 34 mm and 33 mm, respectively. Furthermore, Cu2+/Cu+ ions promote reactive oxygen species and electrostatically bind with the negatively charged teichoic acid in the bacterial cell wall. The anti-inflammatory and anti-diabetics analysis was conducted using standard BSA denaturation and α-amylase inhibition technique with cell inhibition values of 85.66 and 81.18% for TDCO3 NPs. Additionally, the TDCO3 NPs delivered prominent anticancer activity with the lowest IC50 value 18.2 µg/mL in the MTT assay technique against HeLa cancer cells.

3.
Sci Rep ; 12(1): 11572, 2022 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-35799052

RESUMO

In recent years, there has been an increase in demand for inexpensive biowaste-derived photocatalysts for the degradation of hazardous dyes and pharmacological drugs. Here, we developed eggshell derived hydroxyapatite nanoparticles entrenched on two-dimensional g-C3N4 nanosheets. The structural, morphological and photophysical behavior of the materials is confirmed through various analytical techniques. The photocatalytic performance of the highly efficient HAp/gC3N4 photocatalyst is evaluated against methylene blue (MB) and doxycycline drug contaminates under UV-visible light exposure. The HAp/gC3N4 photocatalyst exhibit excellent photocatalytic performance for MB dye (93.69%) and doxycycline drug (83.08%) compared to bare HAp and g-C3N4 nanosheets. The ultimate point to note is that the HAp/gC3N4 photocatalyst was recycled in four consecutive cycles without any degradation performance. Superoxide radicals play an important role in degradation performance, which has been confirmed by scavenger experiments. Therefore, the biowaste-derived HAp combined with gC3N4 nanosheets is a promising photocatalyst for the degradation of hazardous dyes and pharmacological drug wastes.


Assuntos
Corantes , Durapatita , Catálise , Doxiciclina , Luz , Azul de Metileno
4.
Chemosphere ; 290: 133299, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34914961

RESUMO

Fabrication of layered triple hydroxides (LTH) is a typical and remarkable approach to produce new functionalities passionately investigated for photocatalytic removal of organic pollutants from industrial wastewater. The hydrothermal method was used to prepare different weight percentages of yttrium (Y) doped NiMgAl LTH. The structural, functional, optical, and morphological properties of the prepared samples were investigated using X-ray diffraction, Fourier transformed-infrared spectroscopy, ultraviolet-visible diffuse reflectance spectroscopy, and scanning electron microscopy. The photocatalytic degradation of the different percentages of Y-doped LTH samples were assessed through the photocatalytic degradation of methylene blue dye under the visible light irradiation. When compared to other lower concentrations of Y doping, the photocatalytic degradation efficiency of 1 wt.% Y-doped LTH was higher. Thus, the optimized LTH's improved photocatalytic performance was attributed to increased visible light absorption with low transmission and improved electron-hole separation.


Assuntos
Azul de Metileno , Ítrio , Catálise , Hidróxidos , Luz
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...