Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
3.
J Am Chem Soc ; 145(39): 21502-21513, 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37733021

RESUMO

The development and optimization of fast battery charging protocols require detailed information regarding lithium speciation inside a battery. Nuclear magnetic resonance (NMR) spectroscopy has the unique capability of identifying the Li phases formed in an anode during Li-ion cell operation and quantifying their relative amounts. In addition, both Li metal films and dendrites are readily detected and quantified. Here, our recently reported parallel-plate resonator radio frequency (RF) probe and the cartridge-type single-layer full cell were used to track the behavior of Si electrodes during cycling and during fast charging. The LixSi compounds formed during electrochemical cycling exhibit an unexpected intrinsic nonequilibrium behavior at both slow and fast rates, evolving toward increasingly disordered local environments. The evolution with time of lithiated phases is nonlinear during both charging and discharging at constant current, unlike the case for pure graphite, and asymmetric between charge and discharge. During charging at rates of 1C, 2C, and 3C, metallic Li in both films and (to a lesser extent) dendritic forms are deposited on the Si anode. Part of the Li metal film formation is reversible, but a fraction remains on the electrode surface as dead Li, while all of the dendritic Li, even though formed in a considerably smaller amount, is entirely irreversible. Such performance-governing properties are critical to the development of fast-charging protocols for lithium-ion batteries (LIBs) and are exceptionally well evaluated and quantified by 7Li magnetic resonance strategies such as those presented here.

4.
Inorg Chem ; 62(39): 16068-16076, 2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37721713

RESUMO

The structure of a Na4Sn2Ge5O16 phase was established via single-crystal X-ray diffraction. Unusually large displacement parameters of Na atoms suggested the possibility of Na+ ionic conductivity. To create Na deficiencies and thus increase the Na+ mobility in Na4Sn2Ge5O16, Sn4+ cations were partially substituted with Sb5+. A series of Na4-xSn2-xSbxGe5O16 samples (x = 0, 0.05, 0.10, 0.15, 0.20, 0.25, 0.30, or 0.35) were prepared by solid-state reactions and characterized with electrical impedance spectroscopy in the range of 25-200 °C. The highest ionic conductivity value was achieved in the Na3.8Sn1.8Sb0.2Ge5O16 sample (1.6 mS cm-1 at 200 °C). Na+ migration pathways were calculated using the bond-valence energy landscape approach, and two-dimensional conductivity channels with low energy barriers (≈0.4 eV) were found in the structure. Three-dimensional conductivity can also be achieved in the structure; however, it has a much higher energy barrier. The pristine phase and Na3.8Sn1.8Sb0.2Ge5O16 sample were studied via 23Na and 119Sn solid-state nuclear magnetic resonance. A faster exchange between the Na sites was observed in the doped sample.

5.
Angew Chem Int Ed Engl ; 61(47): e202212471, 2022 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-36265124

RESUMO

The key to increasing the energy density of lithium-ion batteries is to incorporate high contents of extractable Li into the cathode. Unfortunately, this triggers formidable challenges including structural instability and irreversible chemistry under operation. Here, we report a new kind of ultra-high Li compound: Li4+x MoO5 Fx (1≤x≤3) for cathode with an unprecedented level of electrochemically active Li (>3 Li+ per formula), delivering a reversible capacity up to 438 mAh g-1 . Unlike other reported Li-rich cathodes, Li4+x MoO5 Fx presents distinguished structure stability to immunize against irreversible behaviors. Through spectroscopic and electrochemical techniques, we find an anionic redox-dominated charge compensation with negligible oxygen release and voltage decay. Our theoretical analysis reveals a "reductive effect" of high-level fluorination stabilizes the anionic redox by reducing the oxygen ions in pure-Li conditions, enabling a facile, reversible, and high Li-portion cycling.

6.
J Magn Reson ; 325: 106943, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33647764

RESUMO

A new parallel-plate resonator for 7Li ion cell studies is introduced along with a removable cartridge-like electrochemical cell for lithium ion battery studies. This geometry separates the RF probe from the electrochemical cell permitting charge/discharge of the cell outside the magnet and introduces the possibility of multiplexing samples under test. The new cell has a geometry that is similar to that of a real battery, unlike the majority of cells employed for MR/MRI studies to this point. The cell, with electrodes parallel to the B1 magnetic field of the probe, avoids RF attenuation during excitation/reception. The cell and RF probe dramatically increase the sample volume compared to traditional MR compatible battery designs. Ex situ and in situ 1D 7Li profiles of Li ions in the electrolyte solution of a cartridge-like cell were acquired, with a nominal resolution of 35 µm at 38 MHz. The cell and RF probe may be employed for spectroscopy, imaging and relaxation studies. We also report the results of a T1-T2 relaxation correlation experiment on both a pristine and fully charged cell. This study represents the first T1-T2 relaxation correlation experiment performed in a Li ion cell. The T1-T2 correlation maps suggest lithium intercalated into graphite is detected by this methodology in addition to other Li species.

7.
Inorg Chem ; 59(8): 5339-5349, 2020 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-32250599

RESUMO

The OP4-(Li/Na)xCoO2 phase is an unusual lamellar oxide with a 1:1 alternation between Li and Na interslab spaces. In order to probe the local structure, electronic structure, and dynamics, 7Li and 23Na magic angle spinning nuclear magnetic resonance (MAS NMR) spectroscopy was performed in complementarity to X-ray diffraction and electronic and magnetic properties measurements. 7Li MAS NMR showed that NMR shifts result from two contributions: the Fermi contact and the Knight shifts due to the presence of both localized and delocalized electrons, which is really unusual. 7Li MAS NMR clearly shows several Li environments, indicating that, moreover, Co ions with different local electronic structures are formed, probably due to the arrangement of the Na+ ions in the next cationic layer. 23Na MAS NMR showed that some Na+ ions are located in the Li layer, which was not previously considered in the structural model. The Rietveld refinement of the synchrotron XRD led to the OP4-[Li0.42Na0.05]Na0.32CoO2 formula for the material. In addition, 7Li and 23Na MAS NMR spectroscopies provide information about the cationic mobility in the material: Whereas no exchange is observed for 7Li up to 450 K, the 23Na spectrum already reveals a single average signal at room temperature due to a much larger ionic mobility.

8.
Solid State Nucl Magn Reson ; 103: 1-8, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31404814

RESUMO

Sodium ion batteries offer an inexpensive alternative to lithium ion batteries, particularly for large-scale applications such as grid storage that do not require fast charging rates and high power output. Moreover, the use of polyanionic structures as cathode materials afford incredibly high structural stability relative to layered transition metal oxides that can undergo a structural collapse upon full removal of the charge carrying ions. Sodium iron fluorophosphate, Na2FePO4F, has demonstrated its viability as a potential cathode material for sodium ion batteries, having a robust framework even after multiple charge-discharge cycles. Although solid-state NMR has traditionally been an excellent method for the determination of local structure and dynamic properties of cathode materials during the electrochemical cycling process, reliable assignment of the 23Na chemical shifts resulting from the paramagnetic hyperfine interaction can be difficult when using only empirical rules. Here we present the use of density functional theory calculations to assign the experimentally observed NMR shifts to the crystallographic sites in Na2FePO4F, where it is found that the results do not agree with the previously reported assignment based upon simple geometry arguments. Furthermore, we report the justification of the proposed desodiation mechanism in Na2FePO4F on the basis of theoretical arguments, in good agreement with experimental NMR results reported previously.

9.
J Am Chem Soc ; 141(35): 13758-13761, 2019 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-31429559

RESUMO

A new in situ magic angle spinning (MAS) 7Li nuclear magnetic resonance (NMR) strategy allowing for the observation of a full lithium-ion cell is introduced. Increased spectral resolution is achieved through a novel jelly roll cell design, which allowed these studies to be performed for the first time under MAS conditions (MAS rate 10 kHz). The state of charge, metallic lithium plating and solid-electrolyte interface (SEI) formation was captured for the first charge/discharge cycle of a full electrochemical cell (LiCoO2/graphite). This strategy can be used to monitor both anode and cathode electrodes concurrently, which is valuable for tracking the lithium distribution in a full cell in real time and may also enable identification of causes of capacity loss that are not readily available from bulk electrochemical analyses, or other post-mortem strategies.


Assuntos
Fontes de Energia Elétrica , Técnicas Eletroquímicas , Lítio/química , Eletrólitos/química , Desenho de Equipamento , Espectroscopia de Ressonância Magnética/normas , Padrões de Referência
12.
Angew Chem Int Ed Engl ; 58(26): 8681-8686, 2019 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-31041839

RESUMO

Developing high-performance all-solid-state batteries is contingent on finding solid electrolyte materials with high ionic conductivity and ductility. Here we report new halide-rich solid solution phases in the argyrodite Li6 PS5 Cl family, Li6-x PS5-x Cl1+x , and combine electrochemical impedance spectroscopy, neutron diffraction, and 7 Li NMR MAS and PFG spectroscopy to show that increasing the Cl- /S2- ratio has a systematic, and remarkable impact on Li-ion diffusivity in the lattice. The phase at the limit of the solid solution regime, Li5.5 PS4.5 Cl1.5 , exhibits a cold-pressed conductivity of 9.4±0.1 mS cm-1 at 298 K (and 12.0±0.2 mS cm-1 on sintering)-almost four-fold greater than Li6 PS5 Cl under identical processing conditions and comparable to metastable superionic Li7 P3 S11 . Weakened interactions between the mobile Li-ions and surrounding framework anions incurred by substitution of divalent S2- for monovalent Cl- play a major role in enhancing Li+ -ion diffusivity, along with increased site disorder and a higher lithium vacancy population.

13.
Phys Chem Chem Phys ; 20(28): 19098-19109, 2018 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-29974090

RESUMO

Perfluorosulfonic acid (PFSA) materials have been used in polymer electrolyte membrane fuel cells (PEMFCs) as electrolyte materials due to their mechanical durability and high proton conductivity. To understand the fundamental chemistry at a molecular level in material performance properties, we have developed and validated method for evaluating local dynamics using 19F double-quantum solid-state nuclear magnetic resonance (ssNMR) spectroscopy. The local dynamics information can be separated and analyzed in terms of fluorine interactions with respect to the different temperatures and hydration levels. The polymer side chain is proven to be more locally mobile which is reflected by the lower apparent dipolar coupling constant (Dapp) compared to the backbone. This observation agrees with the micro-phase separation morphology evolution. In the current study, different types of PFSA materials were explored and compared. The dynamics investigation of the PFSA materials has been conducted at various conditions. In operando membrane performance analyses were performed in parallel at Ballard Power Systems. PFSA membranes were prepared into membrane electrode assemblies (MEAs), with catalyst layers and gas diffusion layers. From the cyclic voltammetry measurements, the H2 crossover values were extracted. These data reveal a strong correlation between the proton conductivity and the site-specific PFSA side chain local dynamics. Moreover, a correlation was drawn between increasing side chain mobility (lower Dapp), and increased H2 permeability. The link between the fundamental dynamics study and this key PFSA performance analysis provides insight into proton transport mechanisms.

14.
ACS Nano ; 12(3): 2708-2718, 2018 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-29505239

RESUMO

Lithium-rich layered oxides are promising cathode candidates because of their exceptional high capacity. The commercial application of these high-energy cathodes, however, is thwarted by the undesired rapid performance decay during cycling. Surface degradation has been widely considered to correlate with the performance decay of the cathodes, whereas, in this work, we demonstrate that the degradation of Li-rich high-energy Li1.2Ni0.13Mn0.54Co0.13O2 (HENMC) cathode material not only takes place at surfaces but also proceeds from its internal structure. In addition to demonstrating the surface reconstruction and the formation of a cathode-electrolyte interphase (CEI) layer of cycled HENMC cathode, this study uncovers the irreversible bulk phase transition from a Li-excess monoclinic ( C2/ m) solid solution into a conventional "layered" ( R3̅ m) phase, accompanied by complete loss of Li+ from the TM layers during cycling. Furthermore, the internal grains of HENMC bear lattice distortions, leading to the formation of "nano-defect" domains, which could limit the Li+ diffusion inside the grains. More prominently, the layered-to-spinel transition in the form of large spinel grains ( Fd3̅ m), hundreds of nanometers across, is discovered, and their detailed atomic arrangement is studied. The findings suggest that, instead of attributing the overall capacity fade to the surface degradation, these drastic bulk evolutions would be the main degradation mechanisms at the source of the rapid failure of Li-rich cathodes.

15.
J Phys Chem Lett ; 8(19): 4794-4800, 2017 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-28926257

RESUMO

Sodium-oxygen batteries have received a significant amount of research attention as a low-overpotential alternative to lithium-oxygen. However, the critical factors governing the composition and morphology of the discharge products in Na-O2 cells are not thoroughly understood. Here we show that oxygen containing functional groups at the air electrode surface have a substantial role in the electrochemical reaction mechanisms in Na-O2 cells. Our results show that the presence of functional groups at the air-electrode surface conducts the growth mechanism of discharge products toward a surface-mediated mechanism, forming a conformal film of products at the electrode surface. In addition, oxygen reduction reaction at hydrophilic surfaces more likely passes through a peroxide pathway, which results in the formation of peroxide-based discharge products. Moreover, in-line X-ray diffraction combined with solid state 23Na NMR results indicate the instability of discharge products against carbonaceous electrodes. The findings of this study help to explain the inconsistency among various reports on composition and morphology of the discharge products in Na-O2 cells and allow the precise control over the discharge products.

16.
J Am Chem Soc ; 139(2): 595-598, 2017 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-28004929

RESUMO

23Na MAS NMR spectra of sodium-oxygen (Na-O2) cathodes reveals a combination of degradation species: newly observed sodium fluoride (NaF) and the expected sodium carbonate (Na2CO3), as well as the desired reaction product sodium peroxide (Na2O2). The initial reaction product, sodium superoxide (NaO2), is not present in a measurable quantity in the 23Na NMR spectra of the cycled electrodes. The reactivity of solid NaO2 is probed further, and NaF is found to be formed through a reaction between the electrochemically generated NaO2 and the electrode binder, polyvinylidene fluoride (PVDF). The instability of cell components in the presence of desired electrochemical reaction products is clearly problematic and bears further investigation.

17.
Phys Chem Chem Phys ; 18(42): 29064-29075, 2016 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-27711529

RESUMO

Layered lithium transition metal oxides are one of the most important types of cathode materials in lithium-ion batteries (LIBs) that possess high capacity and relatively low cost. Nevertheless, these layered cathode materials suffer structural changes during electrochemical cycling that could adversely affect the battery performance. Clear explanations of the cathode degradation process and its initiation, however, are still under debate and not yet fully understood. We herein systematically investigate the chemical evolution and structural transformation of the LiNixMnyCo1-x-yO2 (NMC) cathode material in order to understand the battery performance deterioration driven by the cathode degradation upon cycling. Using high-resolution electron energy loss spectroscopy (HR-EELS) we clarify the role of transition metals in the charge compensation mechanism, particularly the controversial Ni2+ (active) and Co3+ (stable) ions, at different states-of-charge (SOC) under 4.6 V operation voltage. The cathode evolution is studied in detail from the first-charge to long-term cycling using complementary diagnostic tools. With the bulk sensitive 7Li nuclear magnetic resonance (NMR) measurements, we show that the local ordering of transition metal and Li layers (R3[combining macron]m structure) is well retained in the bulk material upon cycling. In complement to the bulk measurements, we locally probe the valence state distribution of cations and the surface structure of NMC particles using EELS and scanning transmission electron microscopy (STEM). The results reveal that the surface evolution of NMC is initiated in the first-charging step with a surface reduction layer formed at the particle surface. The NMC surface undergoes phase transformation from the layered structure to a poor electronic and ionic conducting transition-metal oxide rock-salt phase (R3[combining macron]m → Fm3[combining macron]m), accompanied by irreversible lithium and oxygen loss. In addition to the electrochemical cycling effect, electrolyte exposure also shows non-negligible influence on cathode surface degradation. These chemical and structural changes of the NMC cathode could contribute to the first-cycle coulombic inefficiency, restrict the charge transfer characteristics and ultimately impact the cell capacity.

18.
J Am Chem Soc ; 138(25): 7992-9, 2016 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-27250238

RESUMO

Accurate modeling of Li-ion batteries performance, particularly during the transient conditions experienced in automotive applications, requires knowledge of electrolyte transport properties (ionic conductivity κ, salt diffusivity D, and lithium ion transference number t(+)) over a wide range of salt concentrations and temperatures. While specific conductivity data can be easily obtained with modern computerized instrumentation, this is not the case for D and t(+). A combination of NMR and MRI techniques was used to solve the problem. The main advantage of such an approach over classical electrochemical methods is its ability to provide spatially resolved details regarding the chemical and dynamic features of charged species in solution, hence the ability to present a more accurate characterization of processes in an electrolyte under operational conditions. We demonstrate herein data on ion transport properties (D and t(+)) of concentrated LiPF6 solutions in a binary ethylene carbonate (EC)-dimethyl carbonate (DMC) 1:1 v/v solvent mixture, obtained by the proposed technique. The buildup of steady-state (time-invariant) ion concentration profiles during galvanostatic experiments with graphite-lithium metal cells containing the electrolyte was monitored by pure phase-encoding single point imaging MRI. We then derived the salt diffusivity and Li(+) transference number over the salt concentration range 0.78-1.27 M from a pseudo-3D combined PFG-NMR and MRI technique. The results obtained with our novel methodology agree with those obtained by electrochemical methods, but in contrast to them, the concentration dependences of salt diffusivity and Li(+) transference number were obtained simultaneously within the single in situ experiment.

19.
Phys Chem Chem Phys ; 18(9): 6657-67, 2016 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-26871506

RESUMO

The trend toward Li-ion batteries operating at increased (>4.3 V vs. Li/Li(+)) voltages requires the development of novel classes of lithium electrolytes with electrochemical stability windows exceeding those of LiPF6/carbonate electrolyte solutions. Several new classes of electrolytes have been synthesized and investigated over the past decade, in the search for LIB electrolytes with improved properties (increased hydrolytic stability, improved thermal abuse tolerance, higher oxidation voltages, etc.) compared with the present state-of-the-art LiPF6 and organic carbonates-based formulations. Among these are deep eutectic electrolytes (DEEs), which share many beneficial characteristics with ionic liquids, such as low vapor pressure and large electrochemical stability windows, with the added advantage of a significantly higher lithium transference number. The present work presents the pulsed field gradient NMR characterization of the transport properties (diffusion coefficients and cation transport numbers) of binary DEEs consisting of a sulfonamide solvent and lithium bis(trifluoromethanesulfonyl)imide salt. Insights into the structural and dynamical properties, which enable one to rationalize the observed ionic conductivity behavior were obtained from a combination of NMR data and MD simulations. The insights thus gained should assist the formulation of novel DEEs with improved properties for LIB applications.

20.
J Phys Chem B ; 119(37): 12238-48, 2015 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-26247105

RESUMO

We used NMR imaging (MRI) combined with data analysis based on inverse modeling of the mass transport problem to determine ionic diffusion coefficients and transference numbers in electrolyte solutions of interest for Li-ion batteries. Sensitivity analyses have shown that accurate estimates of these parameters (as a function of concentration) are critical to the reliability of the predictions provided by models of porous electrodes. The inverse modeling (IM) solution was generated with an extension of the Planck-Nernst model for the transport of ionic species in electrolyte solutions. Concentration-dependent diffusion coefficients and transference numbers were derived using concentration profiles obtained from in situ (19)F MRI measurements. Material properties were reconstructed under minimal assumptions using methods of variational optimization to minimize the least-squares deviation between experimental and simulated concentration values with uncertainty of the reconstructions quantified using a Monte Carlo analysis. The diffusion coefficients obtained by pulsed field gradient NMR (PFG-NMR) fall within the 95% confidence bounds for the diffusion coefficient values obtained by the MRI+IM method. The MRI+IM method also yields the concentration dependence of the Li(+) transference number in agreement with trends obtained by electrochemical methods for similar systems and with predictions of theoretical models for concentrated electrolyte solutions, in marked contrast to the salt concentration dependence of transport numbers determined from PFG-NMR data.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...