Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Healthc Mater ; 8(13): e1801557, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31081261

RESUMO

Fabrication and testing of a novel nanostructured surface-enhanced Raman catheter device is reported for rapid detection, classification, and grading of normal, premalignant, and malignant tissues with high sensitivity and accuracy. The sensor part of catheter is formed by a surface-enhanced Raman scattering (SERS) substrate made up of leaf-like TiO2 nanostructures decorated with 30 nm sized Ag nanoparticles. The device is tested using a total of 37 patient samples wherein SERS signatures of oral tissues consisting of malignant oral squamous cell carcinoma (OSCC), verrucous carcinoma, premalignant leukoplakia, and disease-free conditions are detected and classified with an accuracy of 97.24% within a short detection-cum-processing time of nearly 25-30 min per patient. Neoplastic grade changes detected using this device correlate strongly with conventional pathological data, enabling correct classification of tumors into three grades with an accuracy of 97.84% in OSCC. Thus, the potential of a SERS catheter device as a point-of-care pathological tool is shown for the rapid and accurate detection, classification, and grading of solid tumors.


Assuntos
Carcinoma de Células Escamosas/patologia , Neoplasias Bucais/patologia , Análise Espectral Raman/métodos , Carcinoma de Células Escamosas/classificação , Análise Discriminante , Humanos , Nanopartículas Metálicas/química , Neoplasias Bucais/classificação , Gradação de Tumores , Análise de Componente Principal , Prata/química , Titânio/química
2.
ACS Biomater Sci Eng ; 5(1): 139-148, 2019 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-33405881

RESUMO

Glioma stem cells (GSC) present a critical therapeutic challenge for glioblastoma multiforme (GBM). Drug screening against GSC demands development of novel in vitro and in vivo platforms that can mimic brain microenvironment and support GSC maintenance and tumorigenesis. Here, we report, a 3-dimensionel (3D) biomimetic macro-porous scaffold developed by incorporating hyaluronic acid, porcine brain extra cellular matrix (ECM) and growth factors that facilitates regeneration of GBM from primary GSCs, ex vivo and in vivo. After characterizing with human and rat GBM cell lines and neurospheres, human GSCs expressing Notch1, Sox-2, Nestin, and CD133 biomarkers were isolated from GBM patients, cultured in the 3D scaffold, and implanted subcutaneously in nude mice to develop patient derived xenograft (PDX) models. Aggressive growth pattern of PDX with formation of intratumoral vascularization was monitored by magnetic resonance imaging (MRI). Histopathological and phenotypial features of the original tumors were retained in the PDX models. We used this regenerated GBM platform to screen novel siRNA nanotherapeutics targeting Notch, Sox-2, FAK signaling for its ability to inhibit the tumorigenic potential of GSCs. Current clinical drug, Temozolomide and an anticancer phytochemical, nanocurcumin, were used as controls. The siRNA nanoparticles showed excellent efficacy in inhibiting tumorigenesis by GSCs in vivo. Our study suggests that the brain-ECM mimicking scaffold can regenerate primary gliomas from GSCs in vitro and in vivo, and the same can be used as an effective platform for screening drugs against glioma stem cells.

4.
Sci Rep ; 7: 43271, 2017 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-28262735

RESUMO

Localized and controlled delivery of chemotherapeutics directly in brain-tumor for prolonged periods may radically improve the prognosis of recurrent glioblastoma. Here, we report a unique method of nanofiber by fiber controlled delivery of anti-cancer drug, Temozolomide, in orthotopic brain-tumor for one month using flexible polymeric nano-implant. A library of drug loaded (20 wt%) electrospun nanofiber of PLGA-PLA-PCL blends with distinct in vivo brain-release kinetics (hours to months) were numerically selected and a single nano-implant was formed by co-electrospinning of nano-fiber such that different set of fibres releases the drug for a specific periods from days to months by fiber-by-fiber switching. Orthotopic rat glioma implanted wafers showed constant drug release (116.6 µg/day) with negligible leakage into the peripheral blood (<100 ng) rendering ~1000 fold differential drug dosage in tumor versus peripheral blood. Most importantly, implant with one month release profile resulted in long-term (>4 month) survival of 85.7% animals whereas 07 day releasing implant showed tumor recurrence in 54.6% animals, rendering a median survival of only 74 days. In effect, we show that highly controlled drug delivery is possible for prolonged periods in orthotopic brain-tumor using combinatorial nanofibre libraries of bulk-eroding polymers, thereby controlling glioma recurrence.


Assuntos
Antineoplásicos/administração & dosagem , Neoplasias Encefálicas/tratamento farmacológico , Dacarbazina/análogos & derivados , Preparações de Ação Retardada/administração & dosagem , Glioma/tratamento farmacológico , Recidiva Local de Neoplasia/tratamento farmacológico , Nanomedicina Teranóstica/métodos , Animais , Antineoplásicos/farmacocinética , Neoplasias Encefálicas/diagnóstico , Linhagem Celular , Dacarbazina/administração & dosagem , Dacarbazina/farmacocinética , Modelos Animais de Doenças , Portadores de Fármacos/administração & dosagem , Glioma/diagnóstico , Humanos , Nanofibras/administração & dosagem , Recidiva Local de Neoplasia/diagnóstico , Ratos Wistar , Análise de Sobrevida , Temozolomida
5.
J Mater Chem B ; 2(8): 989-998, 2014 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-32261617

RESUMO

The unique vibrational signatures of the biochemical changes in tissue samples may enable the Raman spectroscopic detection of diseases, like cancer. However, the Raman scattering cross-section of tissues is relatively low and hence the clinical translation of such methods faces serious challenges. In this study, we report a simple and efficient surface-enhanced Raman scattering (SERS) substrate, for the rapid and label-free detection of oral cancer. Raman active silver (Ag) surfaces were created on three distinct titania (TiO2) hierarchical nanostructures (needular, bipyramidal and leaf-like) by a process involving a hydrothermal reaction, followed by the sputter deposition of Ag nanoparticles (average size: 30 nm). The resulting SERS substrate efficiencies, measured using crystal violet (CV) as an analyte molecule, showed a highest analytical enhancement factor of ∼106, a detection limit ∼1 nM and a relative standard deviation of the Raman peak maximum of ∼13% for the nano-leafy structure. This substrate was used to analyze tissue sections of 8 oral cancer patients (squamous cell carcinoma of tongue) comprising a total of 24 normal and 32 tumor tissue sections and the recorded spectra were analyzed by principal component analysis and discriminant analysis. The tissue spectra were correctly classified into tumor and normal groups, with a diagnostic sensitivity of 100%, a specificity of 95.83% and the average processing time per patient of 15-20 min. This indicates the potential translation of the SERS method for the rapid and accurate detection of cancer.

6.
Adv Healthc Mater ; 2(11): 1489-500, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23554400

RESUMO

This study is focused on the crucial issue of biodegradability of graphene under in vivo conditions. Characteristic Raman signatures of graphene are used to three dimensionally (3D) image its localization in lung, liver, kidney and spleen of mouse and identified gradual development of structural disorder, happening over a period of 3 months, as indicated by the formation of defect-related D'band, line broadening of D and G bands, increase in ID /IG ratio and overall intensity reduction. Prior to injection, the carboxyl functionalized graphene of lateral size ∼200 nm is well dispersed in aqueous medium, but 24 hours post injection, larger aggregates of size up to 10 µm are detected in various organs. Using Raman cluster imaging method, temporal development of disorder is detected from day 8 onwards, which begins from the edges and grows inwards over a period of 3 months. The biodegradation is found prominent in graphene phagocytosed by tissue-bound macrophages and the gene expression studies of pro-inflammatory cytokines indicated the possibility of phagocytic immune response. In addition, in vitro studies conducted on macrophage cell lines also show development of structural disorder in the engulfed graphene, reiterating the role of macrophages in biodegradation. This is the first report providing clear evidence of in vivo biodegradation of graphene and these results may radically change the perspective on potential biomedical applications of graphene.


Assuntos
Grafite/metabolismo , Macrófagos/metabolismo , Análise Espectral Raman/métodos , Animais , Linhagem Celular , Processamento de Imagem Assistida por Computador , Injeções Intravenosas , Camundongos , Microscopia de Força Atômica , Especificidade de Órgãos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...