Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecotoxicol Environ Saf ; 205: 111324, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32971453

RESUMO

Chlorantraniliprole (CAP) is extensively used for rice pest management. Lack of information on the role of standing water and amount and timing of rainfall on CAP dissipation in rice ecosystem could hamper its prospective use. Present study was performed to investigate the effects of different water regimes (saturated, 5 and 10 cm standing water) and simulated rainfall (40 and 100 mm occurred at 4, 8 and 24 h after CAP application) on leaching, surface runoff and dissipation of CAP into components of rice ecosystem. The results showed highest concentration of CAP residues in soil and plant under saturated condition followed by 5 and 10 cm standing water conditions. Whereas, the highest concentration of CAP in leachates was detected under 10 cm standing water (12.19 ng mL-1). The results revealed large amount of leaching (21.99 ng mL-1) and surface runoff (42.25 ng mL-1) losses of CAP when 100 mm rainfall occurred at 4 h after pesticide application. The total quantity of CAP residues in soil and plant was highest when rainfall occurred at 24 h after pesticide application under both the rainfall amounts. Water stagnation and high intensity rainfall occurred shortly after pesticide application will contribute to pesticide loss to non-target sites through surface run-off and leaching. There will be less pesticide available in soil for plant uptake which may not be sufficient to kill the target organisms.


Assuntos
Mudança Climática , Ecossistema , Inseticidas/análise , Oryza , Chuva , ortoaminobenzoatos/análise , Praguicidas/análise , Estudos Prospectivos , Solo/química , Poluentes do Solo/análise , Água/química , Poluentes Químicos da Água/análise
2.
J Environ Manage ; 272: 111084, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32854888

RESUMO

Point pollution of pesticides originating from the washing of spraying machines could be controlled by biobed system and it is in use in temperate countries. The biobed system is yet to be established in tropical countries. An indigenous biobed system was prepared using local resources like rice straw, farm yard manures (FYM) and paddy field soil to suit the tropical climate. Lowermost 3 cm layer of the biobed system was filled with rice husk biochar to prevent leaching of pesticides from the system. This model system was tested with high doses of imidacloprid (178 mg/column), a commonly used pesticide against number of insect-pests in different crops, for its degradation. The bio-mix trapped a major part of the imidacloprid on the top most layer of the biobed column and only a very small part of imidacloprid recovered from the leachate. The biobed system could degrade 70.13% of applied imidacloprid within 15 days of the experiment and only 5.27% of the total pesticide recovered 90 days after incubation. Addition of biochar layer adsorbed imidacloprid from the outgoing leachate from the biobed column. Biomixture boosted microbial activity more particularly fungal population, which might be responsible for imidacloprid degradation. Microbial biomass carbon, and soil enzymes indicated faster dissipation of imidacloprid from the top layer of the biobed. This simple but efficient biobed system using local resources can fulfill the need of the small and marginal farmers of Asian countries for pesticide decontamination.


Assuntos
Nitrocompostos , Praguicidas/análise , Ásia , Neonicotinoides , Solo
3.
Ecotoxicol Environ Saf ; 180: 288-294, 2019 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-31100593

RESUMO

An experiment was set up to determine the rate of dissipation of chlorantraniliprole (CTP) from two soils with contrasting properties. The other objective of the study was to find out the effect of CTP on soil microorganisms (population, microbial biomass carbon and soil enzymes) under controlled environment. CTP residues when applied at recommended dose ((RD) (at 40 g a.i./ha)) could not be recovered either from alluvial soil or red soil at 60 days post application of CTP in a microcosm study. Higher clay content led to higher half-life in alluvial soil compared to red soil. CTP could not be recovered from RD treatment at 30 days after pesticide application under controlled environment. Faster dissipation of CTP was observed in rice rhizosphere soil with 23.89 and 34.65 days dissipation half-lives for RD and double the recommended dose (DRD) treatments, respectively. Different doses of chlorantraniliprole did not have considerable negative effect on actinomycetes, fungi, biological nitrogen fixers and phospahte solubilising bacteria except the bacteria population. Among the treatments, DRD recorded the lowest activity of dehyrodeganse, fluoresein diacetate hydrolase, acid and alkaline phosphatases followed by RD treatment. Microbial biomass carbon, ß -glycosidase and urease did not vary significantly among the different doses of CTP. In general, RD did not have negative effcts on soil microbes. Hence, CTP can be recommeded in rice pest managment maintaining existing soil microbes and soil enzymes activity.


Assuntos
Microbiota/efeitos dos fármacos , Microbiologia do Solo , Poluentes do Solo/análise , Solo/química , ortoaminobenzoatos/análise , Biomassa , Glicosídeo Hidrolases/análise , Oryza/crescimento & desenvolvimento , Rizosfera , Poluentes do Solo/toxicidade , Urease/análise , ortoaminobenzoatos/toxicidade
4.
Bull Environ Contam Toxicol ; 99(4): 475-480, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28840262

RESUMO

The role of soil moisture, light and pH on imidacloprid dissipation was investigated. A high performance liquid chromatography (HPLC) based method was developed to quantify imidacloprid present in soil with a recovery of more than 82%. Rate of dissipation of imidacloprid from soil was faster in submerged condition compared to field capacity and air dried condition. Imidacloprid dissipated non-significantly between sterile and non-sterile soils, but at field capacity, the dissipation was faster in non-sterile soil compared to sterile soil after 60 days of incubation. Similarly, under submergence, the dissipation of imidacloprid was 66.2% and 79.8% of the initial in sterile and non-sterile soils, respectively. Imidacloprid was rather stable in acidic and neutral water but was prone to photo-degradation. Therefore, imidacloprid degradation will be faster under direct sunlight and at higher soil moisture.


Assuntos
Neonicotinoides/análise , Nitrocompostos/análise , Poluentes do Solo/análise , Solo/química , Luz Solar , Água/análise , Cromatografia Líquida de Alta Pressão , Recuperação e Remediação Ambiental , Concentração de Íons de Hidrogênio , Modelos Teóricos , Neonicotinoides/efeitos da radiação , Nitrocompostos/efeitos da radiação , Fotólise , Poluentes do Solo/efeitos da radiação
5.
Ecotoxicol Environ Saf ; 144: 123-130, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28605646

RESUMO

Extensive use of imidacloprid in rice ecosystem may alter dynamics of microorganisms and can change soil biochemical properties. The objective of this study was to assess the effect of imidacloprid on growth and activities of microbes in tropical rice soil ecosystem. Four treatments, namely, recommended dose (at 25g a.i. ha-1, RD), double the recommended dose (at 50g a.i. ha-1, 2RD), five times the recommended dose (at 125g a.i. ha-1, 5RD) & ten times the recommended dose (at 250g a.i. ha-1, 10RD) along with control were imposed under controlled condition. Dissipation half lives of imidacloprid in soil were 19.25, 20.38, 21.65 and 33.00 days for RD, 2RD, 5RD and 10RD, respectively. In general bacteria, actinomycetes, fungi and phosphate solubilising bacteria population were disturbed due to imidacloprid application. Changes in diversity indices within bacterial community confirmed that imidacloprid application significantly affected distribution of bacteria. Total soil microbial biomass carbon content was reduced on imidacloprid application. Except dehydrogenase and alkaline phosphatase activities, all other soil enzymes namely, ß-glycosidase, fluorescien diacetate hydrolase, acid phosphatase and urease responded negatively to imidacloprid application. The extent of negative effect of imidacloprid depends on dose and exposure time. This study concludes imidacloprid application had transient negative effects on soil microbes.


Assuntos
Inseticidas/toxicidade , Consórcios Microbianos/efeitos dos fármacos , Neonicotinoides/toxicidade , Nitrocompostos/toxicidade , Oryza/crescimento & desenvolvimento , Microbiologia do Solo/normas , Poluentes do Solo/toxicidade , Solo/química , Carbono/análise , Relação Dose-Resposta a Droga , Ecossistema , Inseticidas/análise , Neonicotinoides/análise , Nitrocompostos/análise , Solo/normas , Poluentes do Solo/análise , Fatores de Tempo , Clima Tropical
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...