Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 181
Filtrar
1.
OMICS ; 28(5): 234-245, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38717843

RESUMO

Cerebral vasospasm (CV) is a significant complication following aneurysmal subarachnoid hemorrhage (aSAH), and lacks a comprehensive molecular understanding. Given the temporal trajectory of intracranial aneurysm (IA) formation, its rupture, and development of CV, altered gene expression might be a molecular substrate that runs through these clinical events, influencing both disease inception and progression. Utilizing RNA-Seq, we analyzed tissue samples from ruptured IAs with and without vasospasm to identify the dysregulated genes. In addition, temporal gene expression analysis was conducted. We identified seven dysregulated genes in patients with ruptured IA with vasospasm when compared with those without vasospasm. We found 192 common genes when the samples of each clinical subset of patients with IA, that is, unruptured aneurysm, ruptured aneurysm without vasospasm, and ruptured aneurysm with vasospasm, were compared with control samples. Among these common genes, TNFSF13B, PLAUR, OSM, and LAMB3 displayed temporal expression (progressive increase) with the pathological progression of disease that is formation of aneurysm, its rupture, and consequently the development of vasospasm. We validated the temporal gene expression pattern of OSM at both the transcript and protein levels and OSM emerges as a crucial gene implicated in the pathological progression of disease. In addition, RSAD2 and ATP1A2 appear to be pivotal genes for CV development. To the best of our knowledge, this is the first study to compare the transcriptome of aneurysmal tissue samples of aSAH patients with and without CV. The findings collectively provide new insights on the molecular basis of IA and CV and new leads for translational research.


Assuntos
Perfilação da Expressão Gênica , Aneurisma Intracraniano , Transcriptoma , Vasoespasmo Intracraniano , Humanos , Vasoespasmo Intracraniano/genética , Vasoespasmo Intracraniano/metabolismo , Aneurisma Intracraniano/genética , Aneurisma Intracraniano/metabolismo , Aneurisma Intracraniano/complicações , Transcriptoma/genética , Perfilação da Expressão Gênica/métodos , Masculino , Feminino , Hemorragia Subaracnóidea/genética , Hemorragia Subaracnóidea/complicações , Hemorragia Subaracnóidea/metabolismo , Regulação da Expressão Gênica , Pessoa de Meia-Idade , Aneurisma Roto/genética , Aneurisma Roto/complicações
2.
Mol Cancer ; 23(1): 101, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38745269

RESUMO

BACKGROUND: Long noncoding RNAs (lncRNAs) have surpassed the number of protein-coding genes, yet the majority have no known function. We previously discovered 844 lncRNAs that were genetically linked to breast cancer through genome-wide association studies (GWAS). Here, we show that a subset of these lncRNAs alter breast cancer risk by modulating cell proliferation, and provide evidence that a reduced expression on one lncRNA increases breast cancer risk through aberrant DNA replication and repair. METHODS: We performed pooled CRISPR-Cas13d-based knockdown screens in breast cells to identify which of the 844 breast cancer-associated lncRNAs alter cell proliferation. We selected one of the lncRNAs that increased cell proliferation, KILR, for follow-up functional studies. KILR pull-down followed by mass spectrometry was used to identify binding proteins. Knockdown and overexpression studies were performed to assess the mechanism by which KILR regulates proliferation. RESULTS: We show that KILR functions as a tumor suppressor, safeguarding breast cells against uncontrolled proliferation. The half-life of KILR is significantly reduced by the risk haplotype, revealing an alternative mechanism by which variants alter cancer risk. Mechanistically, KILR sequesters RPA1, a subunit of the RPA complex required for DNA replication and repair. Reduced KILR expression promotes breast cancer cell proliferation by increasing the available pool of RPA1 and speed of DNA replication. Conversely, KILR overexpression promotes apoptosis in breast cancer cells, but not normal breast cells. CONCLUSIONS: Our results confirm lncRNAs as mediators of breast cancer risk, emphasize the need to annotate noncoding transcripts in relevant cell types when investigating GWAS variants and provide a scalable platform for mapping phenotypes associated with lncRNAs.


Assuntos
Neoplasias da Mama , Sistemas CRISPR-Cas , Proliferação de Células , Reparo do DNA , Replicação do DNA , RNA Longo não Codificante , Humanos , RNA Longo não Codificante/genética , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Feminino , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla
7.
Proteomics ; : e2300361, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38350726

RESUMO

Immunotherapy harnesses neoantigens encoded within the human genome, but their therapeutic potential is hampered by low expression, which may be controlled by the nonsense-mediated mRNA decay (NMD) pathway. This study investigates the impact of UPF1-knockdown on the expression of non-canonical/mutant proteins, employing proteogenomic to explore UPF1 role within the NMD pathway. Additionally, we conducted a comprehensive pan-cancer analysis of UPF1 expression and evaluated UPF1 expression in Triple-Negative Breast Cancer (TNBC) tissue in-vivo. Our findings reveal that UPF1-knockdown leads to increased translation of non-canonical/mutant proteins, particularly those originating from retained-introns, pseudogenes, long non-coding RNAs, and unannotated transcript biotypes. Moreover, our analysis demonstrates elevated UPF1 expression in various cancer types, with notably heightened protein levels in patient-derived TNBC tumors compared to adjacent tissues. This study elucidates UPF1 role in mitigating transcriptional noise by degrading transcripts encoding non-canonical/mutant proteins. Targeting this mechanism may reveal a new spectrum of neoantigens accessible to the antigen presentation pathway. Our novel findings provide a strong foundation for the development of therapeutic strategies aimed at targeting UPF1 or modulating the NMD pathway.

9.
Microrna ; 2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37873952

RESUMO

BACKGROUND: Breast cancer is one of the leading causes of cancer deaths in women. Early diagnosis offers the best hope for a cure. Ductal carcinoma in situ is considered a precursor of invasive ductal carcinoma of the breast. In this study, we carried out microRNA sequencing from 7 ductal carcinoma in situ (DCIS), 6 infiltrating ductal carcinomas (IDC Stage IIA) with paired normal, and 5 unpaired normal breast tissue samples. We identified 76 miRNAs that were differentially expressed in DCIS and IDC. METHODS: Additionally, we provide preliminary evidence of miR-365b-3p and miR-7-1-3p being overexpressed, and miR-6507-5p, miR-487b-3p, and miR-654-3p being downregulated in DCIS relative to normal breast tissue. We also identified a miRNA miR-766-3p that was overexpressed in early-stage IDCs. The overexpression of miR-301a-3p in DCIS and IDC was confirmed in 32 independent breast cancer tissue samples. RESULTS: Higher expression of miR-301a-3p is associated with poor overall survival in The Can-cer Genome Atlas Breast Cancer (TCGA-BRCA) dataset, indicating that it may be associated with DCIS at high risk of progressing to IDC and warrants deeper investigation. CONCLUSION: We also analyzed competing endogenous networks associated with differentially expressed miRNAs and identified LRRC75A-AS1 and MAGI2-AS3 as lncRNAs that potentially play an important role in early-stage breast cancers.

10.
Biochem Biophys Res Commun ; 684: 149040, 2023 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-37897910

RESUMO

In recent years, proteogenomics and ribosome profiling studies have identified a large number of proteins encoded by noncoding regions in the human genome. They are encoded by small open reading frames (sORFs) in the untranslated regions (UTRs) of mRNAs and long non-coding RNAs (lncRNAs). These sORF encoded proteins (SEPs) are often <150AA and show poor evolutionary conservation. A subset of them have been functionally characterized and shown to play an important role in fundamental biological processes including cardiac and muscle function, DNA repair, embryonic development and various human diseases. How many novel protein-coding regions exist in the human genome and what fraction of them are functionally important remains a mystery. In this review, we discuss current progress in unraveling SEPs, approaches used for their identification, their limitations and reliability of these identifications. We also discuss functionally characterized SEPs and their involvement in various biological processes and diseases. Lastly, we provide insights into their distinctive features compared to canonical proteins and challenges associated with annotating these in protein reference databases.


Assuntos
RNA Longo não Codificante , Transcriptoma , Humanos , Transcriptoma/genética , Fases de Leitura Aberta/genética , Reprodutibilidade dos Testes , RNA Longo não Codificante/genética , RNA Mensageiro/genética
11.
Transl Stroke Res ; 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37644376

RESUMO

Intracranial aneurysm (IA) has the potential to rupture. Despite scientific advances, we are still not in a position to screen patients for IA and identify those at risk of rupture. It is critical to comprehend the molecular basis of disease to facilitate the development of novel diagnostic strategies. We used transcriptomics to identify the dysregulated genes and understand their role in the disease biology. In particular, RNA-Seq was performed in tissue samples of controls, unruptured IA, and ruptured IA. Dysregulated genes (DGs) were identified and analyzed to understand the functional aspects of molecules. Subsequently, candidate genes were validated at both transcript and protein level. There were 314 DGs in patients with unruptured IA when compared to control samples. Out of these, SPARC and OSM were validated as candidate molecules in unruptured IA. PI3K-AKT signaling pathway was found to be an important pathway for the formation of IA. Similarly, 301 DGs were identified in the samples of ruptured IA when compared with unruptured IAs. CTSL was found to be a key candidate molecule which along with Hippo signaling pathway may be involved in the rupture of IA. We conclude that activation of PI3K-AKT signaling pathway by OSM along with up-regulation of SPARC is important for the formation of IA. Further, regulation of Hippo pathway through PI3K-AKT signaling results in the down-regulation of YAP1 gene. This along with up-regulation of CTSL leads to further weakening of aneurysm wall and its subsequent rupture.

12.
J Pediatr ; 262: 113591, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37399921
13.
Cancers (Basel) ; 15(13)2023 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-37444412

RESUMO

Esophageal squamous cell carcinoma (ESCC) is a heterogeneous cancer associated with a poor prognosis in advanced stages. In India, it is the sixth most common cause of cancer-related mortality. In this study, we employed high-resolution mass spectrometry-based quantitative proteomics to characterize the differential protein expression pattern associated with ESCC. We identified several differentially expressed proteins including PDPN, TOP2A, POSTN and MMP2 that were overexpressed in ESCC. In addition, we identified downregulation of esophagus tissue-enriched proteins such as SLURP1, PADI1, CSTA, small proline-rich proteins such as SPRR3, SPRR2A, SPRR1A, KRT4, and KRT13, involved in squamous cell differentiation. We identified several overexpressed proteins mapped to the 3q24-29 chromosomal region, aligning with CNV alterations in this region reported in several published studies. Among these, we identified overexpression of SOX2, TP63, IGF2BP2 and RNF13 that are encoded by genes in the 3q26 region. Functional enrichment analysis revealed proteins involved in cell cycle pathways, DNA replication, spliceosome, and DNA repair pathways. We identified the overexpression of multiple proteins that play a major role in alleviating ER stress, including SYVN1 and SEL1L. The SYVN1/SEL1L complex is an essential part of the ER quality control machinery clearing misfolded proteins from the ER. SYVN1 is an E3 ubiquitin ligase that ubiquitinates ER-resident proteins. Interestingly, there are also other non-canonical substrates of SYVN1 which are known to play a crucial role in tumor progression. Thus, SYVN1 could be a potential therapeutic target in ESCC.

14.
Am J Med Genet A ; 191(3): 859-863, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36538928

RESUMO

Desmosterolosis is a rare autosomal recessive disorder of cholesterol biosynthesis resulting in multiple congenital abnormalities and syndromic intellectual disability. It is caused by defects in DHCR24, the gene encoding 3-ß-hydroxysterol-24-reductase (24-dehydrocholesterol reductase), which acts in conversion of cholesterol precursor desmosterol, hence resulting in elevated plasma desmosterol levels. To date, desmosterolosis has been reported in 10 patients. Here we report an eleventh patient with desmosterolosis, and the first one to be diagnosed antenatally. Diagnosis was made on whole exome sequencing after amniocentesis due to complex antenatal abnormalities including cerebellar hypoplasia, microgyria, aortic stenosis, and renal tract abnormalities. Sterol quantitation was subsequently done postnatally, which supported the diagnosis. Although the nonspecific features make desmosterolosis difficult to suspect, we demonstrate that disorders of cholesterol synthesis can be considered as a differential diagnosis antenatally.


Assuntos
Desmosterol , Oxirredutases atuantes sobre Doadores de Grupo CH-CH , Humanos , Feminino , Gravidez , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/genética , Sequenciamento do Exoma , Colesterol , Oxirredutases
17.
Mol Ther ; 31(3): 729-743, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36560881

RESUMO

Approximately 50%-55% of high-grade serous ovarian carcinoma (HGSOC) patients have MYC oncogenic pathway activation. Because MYC is not directly targetable, we have analyzed molecular pathways enriched in MYC-high HGSOC tumors to identify potential therapeutic targets. Here, we report that MYC-high HGSOC tumors show enrichment in genes controlled by NRF2, an antioxidant signaling pathway, along with increased thioredoxin redox activity. Treatment of MYC-high HGSOC tumors cells with US Food and Drug Administration (FDA)-approved thioredoxin reductase 1 (TrxR1) inhibitor auranofin resulted in significant growth suppression and apoptosis in MYC-high HGSOC cells in vitro and also significantly reduced tumor growth in an MYC-high HGSOC patient-derived tumor xenograft. We found that auranofin treatment inhibited glycolysis in MYC-high cells via oxidation-induced GAPDH inhibition. Interestingly, in response to auranofin-induced glycolysis inhibition, MYC-high HGSOC cells switched to glutamine metabolism for survival. Depletion of glutamine with either glutamine starvation or glutaminase (GLS1) inhibitor CB-839 exerted synergistic anti-tumor activity with auranofin in HGSOC cells and OVCAR-8 cell line xenograft. These findings suggest that applying a combined therapy of GLS1 inhibitor and TrxR1 inhibitor could effectively treat MYC-high HGSOC patients.


Assuntos
Auranofina , Genes myc , Glutamina , Neoplasias Ovarianas , Tiorredoxina Dissulfeto Redutase , Feminino , Humanos , Auranofina/farmacologia , Auranofina/uso terapêutico , Linhagem Celular Tumoral , Genes myc/genética , Glutaminase/genética , Glutaminase/metabolismo , Glutamina/genética , Glutamina/metabolismo , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Tiorredoxina Dissulfeto Redutase/genética , Tiorredoxina Dissulfeto Redutase/metabolismo , Tiorredoxinas/antagonistas & inibidores , Tiorredoxinas/genética , Tiorredoxinas/metabolismo
18.
Methods Mol Biol ; 2603: 117-125, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36370274

RESUMO

Tyrosine phosphorylation on proteins is an important posttranslational modification that regulates various processes in cells. Mass spectrometry-based phosphotyrosine profiling can reveal tyrosine kinase signaling activity in cells. Using quantitative proteomics strategies such as stable isotope labeling with amino acids in cell culture (SILAC) allows comparison of tyrosine kinase signaling activity across two to -three different conditions. In this book chapter, we discuss the reagents required and a step-by-step protocol to carry out phosphotyrosine profiling using SILAC.


Assuntos
Proteínas Tirosina Quinases , Proteômica , Fosfotirosina/metabolismo , Marcação por Isótopo/métodos , Proteômica/métodos , Fosforilação , Proteínas Tirosina Quinases/metabolismo
19.
Bioinformation ; 18(3): 214-218, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36518130

RESUMO

Neo-antigens presented on cell surface play a pivotal role in the success of immunotherapies. Peptides derived from mutant proteins are thought to be the primary source of neo-antigens presented on the surface of cancer cells. Mutation data from cancer genome sequencing is often used to predict cancer neo-antigens. However, this strategy is associated with significant false positives as many coding mutations may not be expressed at the protein level. Hence, we describe a computational workflow to integrate genomic and proteomic data to predictpotential neo-antigens.

20.
Mol Biol Evol ; 39(10)2022 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-36069948

RESUMO

Deep mutational scanning studies suggest that synonymous mutations are typically silent and that most exposed, nonactive-site residues are tolerant to mutations. Here, we show that the ccdA antitoxin component of the Escherichia coli ccdAB toxin-antitoxin system is unusually sensitive to mutations when studied in the operonic context. A large fraction (∼80%) of single-codon mutations, including many synonymous mutations in the ccdA gene shows inactive phenotype, but they retain native-like binding affinity towards cognate toxin, CcdB. Therefore, the observed phenotypic effects are largely not due to alterations in protein structure/stability, consistent with a large region of CcdA being intrinsically disordered. E. coli codon preference and strength of ribosome-binding associated with translation of downstream ccdB gene are found to be major contributors of the observed ccdA mutant phenotypes. In select cases, proteomics studies reveal altered ratios of CcdA:CcdB protein levels in vivo, suggesting that the ccdA mutations likely alter relative translation efficiencies of the two genes in the operon. We extend these results by studying single-site synonymous mutations that lead to loss of function phenotypes in the relBE operon upon introduction of rarer codons. Thus, in their operonic context, genes are likely to be more sensitive to both synonymous and nonsynonymous point mutations than inferred previously.


Assuntos
Toxinas Bacterianas , Proteínas de Escherichia coli , Escherichia coli , Sistemas Toxina-Antitoxina , Proteínas de Bactérias , Toxinas Bacterianas/genética , Códon/genética , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Mutação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...