Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Europace ; 26(1)2023 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-38170474

RESUMO

AIMS: The increasing use of insertable cardiac monitors (ICM) produces a high rate of false positive (FP) diagnoses. Their verification results in a high workload for caregivers. We evaluated the performance of an artificial intelligence (AI)-based ILR-ECG Analyzer™ (ILR-ECG-A). This machine-learning algorithm reclassifies ICM-transmitted events to minimize the rate of FP diagnoses, while preserving device sensitivity. METHODS AND RESULTS: We selected 546 recipients of ICM followed by the Implicity™ monitoring platform. To avoid clusterization, a single episode per ICM abnormal diagnosis (e.g. asystole, bradycardia, atrial tachycardia (AT)/atrial fibrillation (AF), ventricular tachycardia, artefact) was selected per patient, and analyzed by the ILR-ECG-A, applying the same diagnoses as the ICM. All episodes were reviewed by an adjudication committee (AC) and the results were compared. Among 879 episodes classified as abnormal by the ICM, 80 (9.1%) were adjudicated as 'Artefacts', 283 (32.2%) as FP, and 516 (58.7%) as 'abnormal' by the AC. The algorithm reclassified 215 of the 283 FP as normal (76.0%), and confirmed 509 of the 516 episodes as abnormal (98.6%). Seven undiagnosed false negatives were adjudicated as AT or non-specific abnormality. The overall diagnostic specificity was 76.0% and the sensitivity was 98.6%. CONCLUSION: The new AI-based ILR-ECG-A lowered the rate of FP ICM diagnoses significantly while retaining a > 98% sensitivity. This will likely alleviate considerably the clinical burden represented by the review of ICM events.


Assuntos
Inteligência Artificial , Fibrilação Atrial , Humanos , Eletrocardiografia Ambulatorial/métodos , Fibrilação Atrial/diagnóstico , Eletrocardiografia , Algoritmos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...