Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 21937, 2023 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-38081890

RESUMO

Milk fat globules and casein micelles are the dispersed particles of milk that are responsible for its typical white turbid appearance and usually make it difficult to treat with modern ultraviolet light (UV) preservation techniques. The translucency of milk depends largely on the refractive indices of the dispersed particles, which are directly affected by temperature changes, as incorporated triglycerides can crystallize, melt or transition into other polymorphs. These structural changes have a significant effect on the scattering properties and thus on the UV light propagation in milk, especially by milk fat globules. In this study, a temporary minimum in the optical density of milk was observed within UV wavelength at 14 °C when heating the milk from 6 to 40 °C. This anomaly is consistent with structural changes detected by a distinct endothermic peak at 14 °C using differential scanning calorimetry. Apparently, the optical density anomaly between 10 and 20 °C disappears when the polymorphic transition already has proceeded through previous isothermal equilibration. Thus, melting of equilibrated triglycerides may not affect the RI of milk fat globules at ca. 14 °C as much as melt-mediated polymorphic transitioning. An increased efficiency of UV-C preservation (254 nm) at the translucency optimum was demonstrated by temperature-dependent microbial inactivation experiments.


Assuntos
Leite , Raios Ultravioleta , Animais , Temperatura , Leite/química , Triglicerídeos/análise , Micelas
2.
Heliyon ; 8(11): e11437, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36387446

RESUMO

UV-C treatment is an effective method to inactivate microorganisms and therefore gets increasingly more attention in food industry, especially for liquid products. To test and monitor different UV-C reactor designs, a photochemical actinometer is required that gives reliable UV-C dose values and is non-toxic allowing frequent control of the production chain. Here, a variable concentrated aqueous uridine solution is tested as a photochemical actinometer. Uridine reacts at 262 nm by photohydration to a single photoproduct not absorbing any light. A concentration dependent quantum yield (Ф) was quantified in the range of 0.2-3.0 mM uridine. Results show that uridine is as accurate as the commonly accepted iodide/iodate actinometry, but not as precise. Especially at higher concentrations a higher number of measurements becomes necessary. Further, a temperature correction is presented for 10 °C > ϑ > 30 °C. Taking these results into account, uridine can certainly be considered as a non-toxic dosimeter for UV-C systems.

3.
Artigo em Inglês | MEDLINE | ID: mdl-36305852

RESUMO

Pearlescent pigments are used as colourants to increase the attractiveness of food products, especially in the patisserie and confectionery sector. They can be seen as composite materials and consist of thin potassium aluminium silicate (E 555, mica) platelets as carrier material, coated with a thin metal oxide layer of TiO2 (E 171) and/or iron oxides (E 172). The European Food Safety Authority stated in 2020 that mica-based pearlescent pigments as a whole should be evaluated as new food additives. Obtaining dependable data for particle size and layer thickness of these pigments is crucial both for the demanded food additive evaluation itself and also for the nanomaterial labelling assessment of products containing these food colourants according to the 'Food Information to Consumers' regulation. Since it was found in a previous study on TiO2-containing pearlescent pigments (silver and golden coloured) that the coating consisted of nanoscaled constituent titanium oxide particles, in this follow-up study we investigated whether Fe2O3-containing pearlescent pigments exhibit a similar nanostructured morphology. For this purpose, five commercially-available food products containing these pigments were investigated. Static light scattering and flow particle image analysis were used as screening methods to determine the mica platelet size. Scanning electron microscopy combined with energy-dispersive X-ray spectroscopy was used for nanostructure analysis of the metal oxide coating. The carrier mica platelets were 34-96 µm in diameter and 300-800 nm thick. The coating thickness was found to be in the range of 75-105 nm, with the constituent round shaped iron oxide particles contained therein having a minimum Feret diameter of 37-64 nm.


Assuntos
Corantes de Alimentos , Corantes de Alimentos/química , Seguimentos , Titânio/química , Compostos Férricos , Óxidos/química , Aditivos Alimentares/química
4.
Nanomaterials (Basel) ; 12(4)2022 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-35215053

RESUMO

In single particle inductively coupled plasma mass spectrometry (spICP-MS), the transport efficiency is fundamental for the correct determination of both particle number concentration and size. In the present study, transport efficiency was systematically determined on three different days with six carefully characterised gold nanoparticle (AuNP) suspensions and in seven European and US expert laboratories using different ICP-MS instruments and spICP-MS software. Both particle size-(TES)-and particle frequency-(TEF)-methods were applied. The resulting transport efficiencies did not deviate much under ideal conditions. The TEF method however systematically resulted in lower transport efficiencies. The extent of this difference (0-300% rel. difference) depended largely on the choice and storage conditions of the nanoparticle suspensions used for the determination. The TES method is recommended when the principal measurement objective is particle size. If the main aim of the measurement is the determination of the particle number concentration, the TEF approach could be preferred as it might better account for particle losses in the sample introduction system.

5.
Artigo em Inglês | MEDLINE | ID: mdl-33852817

RESUMO

A wide range of trendy food colourants and ready-to-eat foods containing pearlescent pigments providing glitter effects is currently on the market. These pearlescent pigments consist of mica (potassium aluminium silicate) platelets generally coated with titanium dioxide and/or iron oxides. All single components are approved food additives in the European Union (EU) (E 555, E 171 and E 172). However, the European Food Safety Authority (EFSA) has stated recently, that pearlescent pigments should be evaluated as new food additives. Food grade titanium dioxide was already shown to contain a considerable fraction of nanoparticles. Thus, the question about 'nano'-labelling of TiO2-containing pearlescent pigments according to the 'Novel Food' and 'Food Information to Consumers' regulations arose. In order to provide data for dealing with these issues, in this study four commercially available products of different food categories containing pearlescent pigments were characterised with focus on the structure, size and chemical composition of these pigments. The measurement methods used were flow particle image analysis (FPIA), static light scattering (SLS) and scanning electron microscopy (SEM) combined with energy-dispersive x-ray spectroscopy (EDX). After isolation from various food matrices, the glitter pigments could be easily identified and differentiated by fast FPIA screening from any remaining organic food matrix particles due to their typical platelet-like shape and transparency. The particle size distribution of the platelets was determined by means of SLS and found to be in the range of 8-167 µm. SEM was identified as the most suitable technique for the analysis of the nano-structured coating. For all constituent metal oxide particles (TiO2 and/or Fe2O3) a median minimum Feret diameter (Fmin) of 29.9-46.8 nm was obtained by quantitative SEM image analysis.


Assuntos
Corantes/análise , Aditivos Alimentares/análise , Contaminação de Alimentos/análise , Rotulagem de Alimentos , Nanoestruturas/análise , Titânio/análise , União Europeia , Análise de Alimentos , Inocuidade dos Alimentos
6.
Int J Food Microbiol ; 343: 109105, 2021 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-33636589

RESUMO

In this study the suitability of a thin-film reactor (TFR) equipped with special flow guiding elements (FGE) was examined to analyse its capability to inactivate microorganisms in milk. Experiments were carried out with UHT-milk inoculated with Escherichia coli (E. coli), DH5α and Listeria innocua (L. innocua) WS 2258. Furthermore, the inactivation of microorganisms originally occurring in raw milk was investigated. E. coli, DH5α and L. innocua serving as biodosimeter were reduced by 4.58-log and 3.19-log, respectively. In milk, the original microorganisms showed a 4-log reduction. Without FGE the reduction was below 0.13-log. Thus, it can be derived that the efficacy of a UV-C thin-film reactor processing absorptive media like milk can be highly improved using FGE.


Assuntos
Escherichia coli/efeitos da radiação , Irradiação de Alimentos/métodos , Listeria/efeitos da radiação , Leite/microbiologia , Animais , Contagem de Colônia Microbiana , Escherichia coli/crescimento & desenvolvimento , Irradiação de Alimentos/instrumentação , Microbiologia de Alimentos , Listeria/crescimento & desenvolvimento , Microbiota/efeitos da radiação , Leite/química , Raios Ultravioleta
7.
Food Control ; 120: 107550, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33536722

RESUMO

Titanium dioxide is a white colourant authorised as food additive E 171 in the EU, where it is used in a range of alimentary products. As these materials may contain a fraction of particulates with sizes below 100 nm and current EU regulation requires specific labelling of food ingredient to indicate the presence of engineered nanomaterials there is now a need for standardised and validated methods to appropriately size and quantify (nano)particles in food matrices. A single-particle inductively coupled plasma mass spectrometry (spICP-MS) screening method for the determination of the size distribution and concentration of titanium dioxide particles in sugar-coated confectionery and pristine food-grade titanium dioxide was developed. Special emphasis was placed on the sample preparation procedure, crucial to reproducibly disperse the particles before analysis. The transferability of this method was tested in an interlaboratory comparison study among seven experienced European food control and food research laboratories equipped with various ICP-MS instruments and using different software packages. The assessed measurands included the particle mean diameter, the most frequent diameter, the percentage of particles (in number) with a diameter below 100 nm, the particles' number concentration and a number of cumulative particle size distribution parameters (D0, D10, D50, D99.5, D99.8 and D100). The evaluated method's performance characteristics were, the within-laboratory precision, expressed as the relative repeatability standard deviation (RSDr), and the between-laboratory precision, expressed as the relative reproducibility standard deviation (RSDR). Transmission electron microscopy (TEM) was used as a confirmatory technique and served as the basis for bias estimation. The optimisation of the sample preparation step showed that when this protocol was applied to the relatively simple sample food matrices used in this study, bath sonication turned out to be sufficient to reach the highest, achievable degree of dispersed constituent particles. For the pristine material, probe sonication was required. Repeatability and reproducibility were below 10% and 25% respectively for most measurands except for the lower (D0) and the upper (D100) bound of the particle size distribution and the particle number concentration. The broader distribution of the lower and the upper bounds could be attributed to instrument-specific settings/setups (e.g. the timing parameters, the transport efficiency, type of mass-spectrometer) and software-specific data treatment algorithms. Differences in the upper bound were identified as being due to the non-harmonised application of the upper counting limit. Reporting D99.5 or D99.8 instead of the effectively largest particle diameter (D100) excluded isolated large particles and considerably improved the reproducibility. The particle number-concentration was found to be influenced by small differences in the sample preparation procedure. The comparison of these results with those obtained using electron microscopy showed that the mean and median particle diameter was, in all cases, higher when using spICP-MS. The main reason for this was the higher size detection limit for spICP-MS plus the fact that some of the analysed particles remained agglomerated/aggregated after sonication. Single particle ICP-MS is a powerful screening technique, which in many cases provides sufficient evidence to confirm the need to label a food product as containing (engineered) titanium dioxide nanomaterial according to the current EU regulatory requirements. The overall positive outcome of the method performance evaluation and the current lack of alternative standardised procedures, would indicate this method as being a promising candidate for a full validation study.

8.
PLoS One ; 11(3): e0150855, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26974550

RESUMO

Nanoparticles are ubiquitous in the environment. They originate from anthropogenic or natural sources or they are intentionally produced for different purposes. There exist manifold applications of nanoparticles in modern life leading unavoidably to a confrontation and interaction between nanomaterial and living organisms. Based on their wide distribution tending to increase steadily, the influence of particles based on silica and silver, exhibiting nominal sizes between 0.65 nm and 200 nm, on the physiology of the mycotoxigenic filamentous fungus Penicillium verrucosum was analyzed. The applied concentration and time-point, the size and the chemical composition of the particles was shown to have a strong influence on growth and mycotoxin biosynthesis. On microscopic scale it could be shown that silver nanoparticles attach to the mycelial surface. Moreover, silver nanoparticles with 0.65 nm and 5 nm in size were shown to internalize within the cell, form agglomerates in the cytoplasm and associate to cell organelles.


Assuntos
Nanopartículas Metálicas/química , Micélio/crescimento & desenvolvimento , Micotoxinas/biossíntese , Penicillium/crescimento & desenvolvimento , Prata/química
9.
Food Chem ; 192: 82-9, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26304323

RESUMO

Ultra high pressure homogenization (UHPH) of food is a processing technology to improve food safety and shelf life. However, despite very short treatment duration UHPH may lead to changes in chemical and physico-chemical properties including formation of submicro-/nano-particles. This may affect the physiological or toxicological properties of the treated food. Here, we treated raw almond milk (AMr) with UHPH at 350 MPa and 85 °C (AMuhph), known able to inactivate food relevant microorganisms. UHPH-treatment led to about a threefold increase of the mean particle size. There was a nearly complete loss of antigenicity investigated by ELISA for determination of traces of almond proteins. The content of vitamins B1 and B2 remained unchanged, while free exposed sulfhydryl groups decreased. Despite of observed modifications, UHPH-treatment of almond milk did not cause any changes in cyto- or genotoxic effects and antigenotoxic capability of protecting intestinal cells against iron induced DNA damage in vitro.


Assuntos
Leite/química , Testes de Mutagenicidade/métodos , Prunus dulcis/química , Animais , Manipulação de Alimentos , Pressão
10.
Food Funct ; 5(7): 1341-59, 2014 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-24752749

RESUMO

The development of engineered nanometre sized materials (ENM) produced with food-grade ingredients and designed as delivery systems for organic and inorganic materials has gained increasing interest. The major reason for this trend is the aim to overcome problems associated with the low bioavailability of many bioactive compounds (BC) which are usually claimed to benefit human health. In this review, outcomes of studies investigating the potential bioavailability enhancement of BC using ENM as delivery systems are summarised and discussed. It focuses on in vitro and in vivo studies carried out with ENM produced with food-grade materials and designed for the delivery of vitamins, other secondary plant metabolites and minerals. Furthermore, the physical and physicochemical aspects governing the preparation of the systems, the loading of the BC, the stability of the delivery systems in food applications and finally the release of the BC in the gastrointestinal tract are also considered. The mechanisms leading to an enhanced bioavailability are based on (i) improved solubility of the BC under gastrointestinal conditions, (ii) the protection of the BC from the chemical conditions in the gastrointestinal tract (GIT), (iii) the controlled release within the GIT or (iv) an improved transfer through the intestinal wall. The main outcome of the review is that particle size, surface properties and physical state of the ENM are key parameters to be controlled aiming at an enhanced nutritional value of food materials. Furthermore, the bioavailability classification scheme (BCS) can help to understand the efficacy of different ENM for the delivery of specific BC.


Assuntos
Suplementos Nutricionais , Sistemas de Liberação de Medicamentos , Nanoestruturas/química , Animais , Disponibilidade Biológica , Linhagem Celular , Trato Gastrointestinal/citologia , Trato Gastrointestinal/efeitos dos fármacos , Humanos , Valor Nutritivo , Tamanho da Partícula , Polissacarídeos/química , Proteínas/química , Propriedades de Superfície
11.
J Food Sci ; 77(12): N50-7, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23240975

RESUMO

Anthocyanins belong to the most important hydrophilic plant pigments. Outside their natural environment, these molecules are extremely unstable. Encapsulating them in submicron-sized containers is one possibility to stabilize them for the use in bioactivity studies or functional foods. The containers have to be designed for a target release in the human gastrointestinal system. In this contribution, an anthocyanin-rich bilberry extract was encapsulated in the inner aqueous phase of water-in-oil-in-water-double emulsions. The physical stability as well as the release of free fatty acids and encapsulated, bioactive substances from the emulsions during an in vitro gastrointestinal passage were investigated. The focus was on the influence of emulsion microstructural parameters (for example, inner and outer droplet size, disperse phase content) and required additives (emulsifier systems), respectively. It could be shown that it is possible to stabilize anthocyanins in the inner phase of double emulsions. The release rate of free fatty acids during incubation was independent of the emulsifier used. However, the exterior (O/W)-emulsifier has an impact on the stability of multiple emulsions in gastrointestinal environment and, thus, the location of release. Long-chained emulsifiers like whey proteins are most suitable to transport a maximum amount of bioactive substances to the effective location, being the small intestine for anthocyanins. In addition, it was shown that the dominating release mechanism for entrapped matter was coalescence of the interior W(1) -droplets with the surrounding W(2) -phase.


Assuntos
Antocianinas/química , Emulsões/química , Trato Gastrointestinal/metabolismo , Digestão , Emulsificantes/química , Humanos , Proteínas do Leite/química , Tamanho da Partícula , Extratos Vegetais , Vaccinium myrtillus , Proteínas do Soro do Leite
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...