Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 9(35): eadg9573, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37647398

RESUMO

Imaging based on the induced coherence effect makes use of photon pairs to obtain information of an object without detecting the light that probes it. While one photon illuminates the object, only its partner is detected, so no measurement of coincidence events is needed. The sought-after object's information is revealed, observing a certain interference pattern on the detected photon. Here, we demonstrate experimentally that this imaging technique can be made resilient to noise. We introduce an imaging distillation approach based on the interferometric modulation of the signal of interest. We show that our scheme can generate a high-quality image of an object even against noise levels up to 250 times the actual signal of interest. We also include a detailed theoretical explanation of our findings.

2.
Opt Express ; 31(10): 16107-16117, 2023 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-37157696

RESUMO

The distribution of entanglement via satellite links will drastically extend the reach of quantum networks. Highly efficient entangled photon sources are an essential requirement towards overcoming high channel loss and achieving practical transmission rates in long-distance satellite downlinks. Here we report on an ultrabright entangled photon source that is optimized for long-distance free-space transmission. It operates in a wavelength range that is efficiently detected with space-ready single photon avalanche diodes (Si-SPADs), and readily provides pair emission rates that exceed the detector bandwidth (i.e., the temporal resolution). To overcome this limitation, we demultiplex the photon flux into wavelength channels that can be handled by current single photon detector technology. This is achieved efficiently by using the spectral correlations due to hyper-entanglement in polarization and frequency as an auxiliary resource. Combined with recent demonstrations of space-proof source prototypes, these results pave the way to a broadband long-distance entanglement distribution network based on satellites.

3.
Opt Express ; 31(4): 6039-6050, 2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36823870

RESUMO

Quantum resources can provide supersensitive performance in optical imaging. Detecting entangled photon pairs from spontaneous parametric down conversion (SPDC) with single-photon avalanche diode (SPAD) image sensor arrays (ISAs) enables practical wide-field quantum-enhanced imaging. However, matching the SPDC wavelength to the peak detection efficiency range of complementary metal-oxide-semiconductor (CMOS) compatible mass-producible SPAD-ISAs has remained technologically elusive, resulting in low imaging speeds to date. Here, we show that a recently developed visible-wavelength entangled photon source enables high-speed quantum imaging. By operating at high detection efficiency of a SPAD-ISA, we increase acquisition speed by more than an order of magnitude compared to previous similar quantum imaging demonstrations. Besides being fast, the quantum-enhanced phase imager operating at short wavelengths retrieves nanometer scale height differences, tested by imaging evaporated silica and protein microarray spots on glass samples, with sensitivity improved by a factor of 1.351 ± 0.004 over equivalent ideal classical imaging. This work represents an important stepping stone towards scalable real-world quantum imaging advantage, and may find use in biomedical and industrial applications as well as fundamental research.

4.
Sci Adv ; 8(2): eabl4301, 2022 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-35030021

RESUMO

Holography exploits the interference of a light field reflected/transmitted from an object with a reference beam to obtain a reconstruction of the spatial shape of the object. Classical holography techniques have been very successful in diverse areas such as microscopy, manufacturing technology, and basic science. However, detection constraints for wavelengths outside the visible range restrict the applications for imaging and sensing in general. For overcoming these detection limitations, we implement phase-shifting holography with nonclassical states of light, where we exploit quantum interference between two-photon probability amplitudes in a nonlinear interferometer. We demonstrate that it allows retrieving the spatial shape (amplitude and phase) of the photons transmitted/reflected from the object and thus obtaining an image of the object despite those photons are never detected. Moreover, there is no need to use a well-characterized reference beam, since the two-photon scheme already makes use of one of the photons as reference for holography.

5.
Appl Opt ; 57(3): 377-381, 2018 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-29400784

RESUMO

The vast development of integrated quantum photonic technology enables the implementation of compact and stable interferometric networks. In particular, laser-written waveguide structures allow for complex 3D circuits and polarization-encoded qubit manipulation. However, the main limitation in the scaling up of integrated quantum devices is the single-photon loss due to mode-profile mismatch when coupling to standard fibers or other optical platforms. Here we demonstrate tapered waveguide structures realized by an adapted femtosecond laser writing technique. We show that coupling to standard single-mode fibers can be enhanced up to 77% while keeping the fabrication effort negligible. This improvement provides an important step for processing multiphoton states on chip.

6.
Sci Rep ; 7: 42933, 2017 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-28230090

RESUMO

We propose the realization of photonic circuits whose dynamics is governed by advanced-retarded differential equations. Beyond their mathematical interest, these photonic configurations enable the implementation of quantum feedback and feedforward without requiring any intermediate measurement. We show how this protocol can be applied to implement interesting delay effects in the quantum regime, as well as in the classical limit. Our results elucidate the potential of the protocol as a promising route towards integrated quantum control systems on a chip.

7.
ACS Omega ; 2(10): 7112-7119, 2017 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-31457291

RESUMO

Since the advent of large-scale U mining, processing, and enrichment for energy or weapons production, efficient capture and disposal of U, transuranics, and daughter radionuclides has constituted an omnipresent challenge. In this study, we investigated uranyl (UO2 2+) sequestration by hydrotalcite (HTC) as a coprecipitation or surface adsorption reaction scenario. The master variables of the study were pH (7.0 and 9.5) and CO2 content during the reactions (CO2-rich, CO2r vs CO2-depleted, CO2p). In addition, we compared the outcomes of U-HTC coprecipitation reactions between pristine salt precursors and barren U mine wastewater (lixiviant). Extended X-ray absorption fine structure spectra revealed that uranyl adsorbs on the HTC surface as inner-sphere complexes in CO2r and CO2p systems with U-Mg/Al interatomic distances of ∼3.20 and ∼3.35 Šindicative of single-edge (1E) and double-edge (2E) sharing complexes, respectively. Partial coordination of uranyl by carbonate ligands in CO2r systems does not appear to hinder surface complexation, suggesting ligand-exchange mechanisms to be operative for the formation of inner-sphere surface complexes. Uranyl symmetry is maintained when coprecipitated with Al and Mg from synthetic or barren lixiviant solutions, precluding incorporation into the HTC lattice. Uranyl ions, however, are surrounded by up to 3-5 Mg/Al atoms in coprecipitated samples interfering with HTC crystal growth. Future research should explore the potential of Fe(II) or Mn(II) to reduce U(VI) to U(V), which is conducive for U incorporation into octahedral crystal lattice positions of the hydroxide sheet.

8.
Nat Commun ; 7: 11282, 2016 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-27080915

RESUMO

Transport phenomena on a quantum scale appear in a variety of systems, ranging from photosynthetic complexes to engineered quantum devices. It has been predicted that the efficiency of coherent transport can be enhanced through dynamic interaction between the system and a noisy environment. We report an experimental simulation of environment-assisted coherent transport, using an engineered network of laser-written waveguides, with relative energies and inter-waveguide couplings tailored to yield the desired Hamiltonian. Controllable-strength decoherence is simulated by broadening the bandwidth of the input illumination, yielding a significant increase in transport efficiency relative to the narrowband case. We show integrated optics to be suitable for simulating specific target Hamiltonians as well as open quantum systems with controllable loss and decoherence.

9.
Nat Commun ; 7: 11027, 2016 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-27006089

RESUMO

Fourier transforms, integer and fractional, are ubiquitous mathematical tools in basic and applied science. Certainly, since the ordinary Fourier transform is merely a particular case of a continuous set of fractional Fourier domains, every property and application of the ordinary Fourier transform becomes a special case of the fractional Fourier transform. Despite the great practical importance of the discrete Fourier transform, implementation of fractional orders of the corresponding discrete operation has been elusive. Here we report classical and quantum optical realizations of the discrete fractional Fourier transform. In the context of classical optics, we implement discrete fractional Fourier transforms of exemplary wave functions and experimentally demonstrate the shift theorem. Moreover, we apply this approach in the quantum realm to Fourier transform separable and path-entangled biphoton wave functions. The proposed approach is versatile and could find applications in various fields where Fourier transforms are essential tools.

10.
Sci Rep ; 6: 19489, 2016 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-26771053

RESUMO

The key requirement for harnessing the quantum properties of light is the capability to detect and count individual photons. Of particular interest are photon-number-resolving detectors, which allow one to determine whether a state of light is classical or genuinely quantum. Existing schemes for addressing this challenge rely on a proportional conversion of photons to electrons. As such, they are capable of correctly characterizing small photon fluxes, yet are limited by uncertainties in the conversion rate. In this work, we employ a divide-and-conquer approach to infallibly discerning non-classicality of states of light. This is achieved by transforming the incident fields into uniform spatial distributions that readily lend themselves for characterization by standard on-off detectors. Since the exact statistics of the light stream in multiplexed on-off detectors are click statistics, our technique is freely scalable to accommodate-in principle-arbitrarily large photon fluxes. Our experiments pave the way towards genuine integrated photon-number-resolving detection for advanced on-chip photonic quantum networks.

11.
Nat Commun ; 6: 8273, 2015 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-26391683

RESUMO

Bloch oscillations of quantum particles manifest themselves as periodic spreading and relocalization of the associated wave functions when traversing lattice potentials subject to external gradient forces. Albeit this phenomenon is deeply rooted into the very foundations of quantum mechanics, all experimental observations so far have only contemplated dynamics of one and two particles initially prepared in separable local states. Evidently, a more general description of genuinely quantum Bloch oscillations will be achieved on excitation of a Bloch oscillator by nonlocal states. Here we report the observation of Bloch oscillations of two-particle N00N states, and discuss the nonlocality on the ground of Bell-like inequalities. The time evolution of two-photon N00N states in Bloch oscillators, whether symmetric, antisymmetric or partially symmetric, reveals transitions from particle antibunching to bunching. Consequently, the initial states can be tailored to produce spatial correlations akin to those of bosons, fermions and anyons, presenting potential applications in photonic quantum simulation.

12.
Anal Chim Acta ; 822: 1-22, 2014 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-24725743

RESUMO

Element specificity is one of the key factors underlying the widespread use and acceptance of X-ray absorption spectroscopy (XAS) as a research tool in the environmental and geo-sciences. Independent of physical state (solid, liquid, gas), XAS analyses of metal(loid)s in complex environmental matrices over the past two decades have provided important information about speciation at environmentally relevant interfaces (e.g. solid-liquid) as well as in different media: plant tissues, rhizosphere, soils, sediments, ores, mineral process tailings, etc. Limited sample preparation requirements, the concomitant ability to preserve original physical and chemical states, and independence from crystallinity add to the advantages of using XAS in environmental investigations. Interpretations of XAS data are founded on sound physical and statistical models that can be applied to spectra of reference materials and mixed phases, respectively. For spectra collected directly from environmental matrices, abstract factor analysis and linear combination fitting provide the means to ascertain chemical, bonding, and crystalline states, and to extract quantitative information about their distribution within the data set. Through advances in optics, detectors, and data processing, X-ray fluorescence microprobes capable of focusing X-rays to micro- and nano-meter size have become competitive research venues for resolving the complexity of environmental samples at their inherent scale. The application of µ-XANES imaging, a new combinatorial approach of X-ray fluorescence spectrometry and XANES spectroscopy at the micron scale, is one of the latest technological advances allowing for lateral resolution of chemical states over wide areas due to vastly improved data processing and detector technology.


Assuntos
Poluentes Ambientais/química , Metais/análise , Espectroscopia por Absorção de Raios X , Cromo/química , Nanoestruturas/química , Dinâmica não Linear , Análise de Componente Principal , Urânio/química
13.
Phys Rev Lett ; 112(14): 143604, 2014 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-24765962

RESUMO

We demonstrate quantum walks of correlated photons in a two-dimensional network of directly laser written waveguides coupled in a "swiss cross" arrangement. The correlated detection events show high-visibility quantum interference and unique composite behavior: strong correlation and independence of the quantum walkers, between and within the planes of the cross. Violations of a classically defined inequality, for photons injected in the same plane and in orthogonal planes, reveal nonclassical behavior in a nonplanar structure.

14.
Sci Rep ; 4: 4118, 2014 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-24534893

RESUMO

Chip-based photonic quantum computing is an emerging technology that promises much speedup over conventional computers at small integration volumes. Particular interest is thereby given to polarisation-encoded photonic qubits, and many protocols have been developed for this encoding. However, arbitrary wave plate operation on chip are not available so far, preventing from the implementation of integrated universal quantum computing algorithms. In our work we close this gap and present Hadamard, Pauli-X, and rotation gates of high fidelity for photonic polarisation qubits on chip by employing a reorientation of the optical axis of birefringent waveguides. The optical axis of the birefringent waveguide is rotated due to the impact of an artificial stress field created by an additional modification close to the waveguide. By adjusting this length of the defect along the waveguide, the retardation between ordinary and extraordinary field components is precisely tunable including half-wave plate and quarter-wave plate operations. Our approach demonstrates the full range control of orientation and strength of the induced birefringence and thus allows arbitrary wave plate operations without affecting the degree of polarisation or introducing additional losses to the waveguides. The implemented gates are tested with classical and quantum light.

15.
Opt Lett ; 37(15): 3030-2, 2012 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-22859075

RESUMO

We present the experimental results of a three-dimensional integrated photonic component designed for the simultaneous determination of mutual coherence properties of three light channels. Potential applications to astronomical optical interferometry are proposed and discussed.


Assuntos
Fenômenos Ópticos , Fótons , Interferometria
16.
Environ Sci Technol ; 45(14): 6145-52, 2011 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-21707121

RESUMO

Lead (Pb) bioaccessibility was assessed using 2 in vitro methods in 12 Pb-contaminated soils and compared to relative Pb bioavailability using an in vivo mouse model. In vitro Pb bioaccessibility, determined using the intestinal phase of the Solubility Bioaccessibility Research Consortium (SBRC) assay, strongly correlated with in vivo relative Pb bioavailability (R(2) = 0.88) following adjustment of Pb dissolution in the intestinal phase with the solubility of Pb acetate at pH 6.5 (i.e., relative Pb bioaccessibility). A strong correlation (R(2) = 0.78) was also observed for the relative bioaccessibility leaching procedure (RBALP), although the method overpredicted in vivo relative Pb bioavailability for soils where values were <40%. Statistical analysis of fit results from X-ray absorption near-edge structure (XANES) data for selected soils (n = 3) showed that Pb was strongly associated with Fe oxyhydroxide minerals or the soil organic fraction prior to in vitro analysis. XANES analysis of Pb speciation during the in vitro procedure demonstrated that Pb associated with Fe minerals and the organic fraction was predominantly solubilized in the gastric phase. However, during the intestinal phase of the in vitro procedure, Pb was strongly associated with formation of ferrihydrite which precipitated due to the pH (6.5) of the SBRC intestinal phase. Soils where Fe dissolution was limited had markedly higher concentrations of Pb in solution and hence exhibited greater relative bioavailability in the mouse model. This data suggests that coexistence of Fe in the intestinal phase plays an important role in reducing Pb bioaccessibility and relative bioavailability.


Assuntos
Monitoramento Ambiental/métodos , Chumbo/análise , Chumbo/farmacocinética , Poluentes do Solo/análise , Espectroscopia por Absorção de Raios X/métodos , Animais , Disponibilidade Biológica , Cidades , Compostos Férricos/química , Técnicas In Vitro , Chumbo/sangue , Chumbo/química , Camundongos
17.
J Environ Qual ; 40(3): 767-83, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21546662

RESUMO

We describe the application of quantitative evaluation of mineralogy by scanning electron microscopy in combination with techniques commonly available at hard X-ray microprobes to define the mineralogical environment of a bauxite residue core segment with the more specific aim of determining the speciation of trace metals (e.g., Ti, V, Cr, and Mn) within the mineral matrix. Successful trace metal speciation in heterogeneous matrices, such as those encountered in soils or mineral residues, relies on a combination of techniques including spectroscopy, microscopy, diffraction, and wet chemical and physical experiments. Of substantial interest is the ability to define the mineralogy of a sample to infer redox behavior, pH buffering, and mineral-water interfaces that are likely to interact with trace metals through adsorption, coprecipitation, dissolution, or electron transfer reactions. Quantitative evaluation of mineralogy by scanning electron microscopy coupled with micro-focused X-ray diffraction, micro-X-ray fluorescence, and micro-X-ray absorption near edge structure (mXANES) spectroscopy provided detailed insights into the composition of mineral assemblages and their effect on trace metal speciation during this investigation. In the sample investigated, titanium occurs as poorly ordered ilmenite, as rutile, and is substituted in iron oxides. Manganese's spatial correlation to Ti is closely linked to ilmenite, where it appears to substitute for Fe and Ti in the ilmenite structure based on its mXANES signature. Vanadium is associated with ilmenite and goethite but always assumes the +4 oxidation state, whereas chromium is predominantly in the +3 oxidation state and solely associated with iron oxides (goethite and hematite) and appears to substitute for Fe in the goethite structure.


Assuntos
Óxido de Alumínio/química , Metais/química , Microscopia Eletrônica de Varredura/métodos , Minerais/análise , Oligoelementos/química , Espectroscopia por Absorção de Raios X/métodos , Difração de Raios X/métodos , Óxido de Alumínio/análise , Metais/análise , Microscopia Eletrônica de Varredura/instrumentação , Minerais/química , Oligoelementos/análise , Espectroscopia por Absorção de Raios X/instrumentação , Difração de Raios X/instrumentação
19.
Environ Sci Technol ; 44(12): 4735-40, 2010 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-20459123

RESUMO

The fate and chemical speciation of arsenic (As) during uptake, translocation, and storage by the As hyperaccumulating fern Pityrogramma calomelanos var. austroamericana (Pteridaceae) were examined using inductively coupled plasma-atomic emission spectrometry (ICP-AES) and synchrotron-based micro-X-ray absorption near edge structure (micro-XANES) and micro-X-ray fluorescence (micro-XRF) spectroscopies. Chemical analysis revealed total As concentration was ca. 6.5 times greater in young fronds (5845 mg kg(-1) dry weight (DW)) than in old fronds (903 mg kg(-1) DW). In pinnae, As concentration decreased from the base (6822 mg kg(-1) DW) to the apex (4301 mg kg(-1) DW) of the fronds. The results from micro-XANES and micro-XRF of living tissues suggested that more than 60% of arsenate (As(V)) absorbed was reduced to arsenite (As(III)) in roots, prior to transport through vascular tissues as As(V) and As(III). In pinnules, As(III) was the predominant redox species (72-90%), presumably as solvated, oxygen coordinated compounds. The presence of putative As(III)-sulphide (S(2-)) coordination throughout the fern tissues (4-25%) suggests that S(2-) functional groups may contribute in the biochemical reduction of As(V) to As(III) during uptake and transport at a whole-plant level. Organic arsenicals and thiol-rich compounds were not detected in the species and are unlikely to play a role in As hyperaccumulation in this fern. The study provides important insights into homeostatic regulation of As following As uptake in P. calomelanos var. austroamericana.


Assuntos
Arsênio/metabolismo , Gleiquênias/metabolismo , Distribuição Tecidual , Espectroscopia por Absorção de Raios X
20.
Chemosphere ; 76(4): 529-35, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19345396

RESUMO

The consumption of arsenic (As) contaminated rice is an important exposure route for humans in countries where rice cultivation employs As contaminated irrigation water. Arsenic toxicity and mobility are a function of its chemical-speciation. The distribution and identification of As in the rice plant are hence necessary to determine the uptake, transformation and potential risk posed by As contaminated rice. In this study we report on the distribution and chemical-speciation of As in rice (Oryza sativa Quest) by X-ray fluorescence (XRF) and X-ray absorption near edge structure (XANES) measurements of rice plants grown in As contaminated paddy water. Investigations of muXRF images from rice tissues found that As was present in all rice tissues, and its presence correlated with the presence of iron at the root surface and copper in the rice leaf. X-ray absorption near edge structure analysis of rice tissues identified that inorganic As was the predominant form of As in all rice tissues studied, and that arsenite became increasingly dominant in the aerial portion of the rice plant.


Assuntos
Arsênio/análise , Oryza/química , Poluentes do Solo/análise , Oligoelementos/análise , Agricultura , Oxirredução , Folhas de Planta/química , Brotos de Planta/química , Espectrometria por Raios X/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA