Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Biol Sci ; 287(1938): 20202252, 2020 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-33171082

RESUMO

Many parasites with complex life cycles modify their intermediate hosts' behaviour, presumably to increase transmission to their final host. The threespine stickleback (Gasterosteus aculeatus) is an intermediate host in the cestode Schistocephalus solidus life cycle, which ends in an avian host, and shows increased risky behaviours when infected. We studied brain gene expression profiles of sticklebacks infected with S. solidus to determine the proximal causes of these behavioural alterations. We show that infected fish have altered expression levels in genes involved in the inositol pathway. We thus tested the functional implication of this pathway and successfully rescued normal behaviours in infected sticklebacks using lithium exposure. We also show that exposed but uninfected fish have a distinct gene expression profile from both infected fish and control individuals, allowing us to separate gene activity related to parasite exposure from consequences of a successful infection. Finally, we find that selective serotonin reuptake inhibitor-treated sticklebacks and infected fish do not have similarly altered gene expression, despite their comparable behaviours, suggesting that the serotonin pathway is probably not the main driver of phenotypic changes in infected sticklebacks. Taken together, our results allow us to predict that if S. solidus directly manipulates its host, it could target the inositol pathway.


Assuntos
Encéfalo/fisiologia , Infecções por Cestoides/veterinária , Doenças dos Peixes/parasitologia , Smegmamorpha/parasitologia , Animais , Comportamento Animal , Cestoides , Expressão Gênica , Interações Hospedeiro-Parasita , Parasitos
2.
J Exp Biol ; 221(Pt 6)2018 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-29444843

RESUMO

Many parasites with complex life cycles modify the behaviour of their intermediate host, which has been proposed to increase transmission to their definitive host. This behavioural change could result from the parasite actively manipulating its host, but could also be explained by a mechanical effect, where the physical presence of the parasite affects host behaviour. We created an artificial internal parasite using silicone injections in the body cavity to test this mechanical effect hypothesis. We used the Schistocephalus solidus and threespine stickleback (Gasterosteus aculeatus) system, as this cestode can reach up to 92% of its fish host mass. Our results suggest that the mass burden brought by this macroparasite alone is not sufficient to cause behavioural changes in its host. Furthermore, our results show that wall-hugging (thigmotaxis), a measure of anxiety in vertebrates, is significantly reduced in Schistocephalus-infected sticklebacks, unveiling a new altered component of behaviour that may result from manipulation by this macroparasite.


Assuntos
Cestoides/fisiologia , Infecções por Cestoides/veterinária , Doenças dos Peixes/parasitologia , Locomoção , Smegmamorpha , Animais , Infecções por Cestoides/parasitologia , Interações Hospedeiro-Parasita , Quebeque
3.
J Exp Biol ; 220(Pt 2): 237-246, 2017 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-27811294

RESUMO

Sticklebacks infected by the parasitic flatworm Schistocephalus solidus show dramatic changes in phenotype, including a loss of species-typical behavioural responses to predators. The timing of host behaviour change coincides with the development of infectivity of the parasite to the final host (a piscivorous bird), making it an ideal model for studying the mechanisms of infection-induced behavioural modification. However, whether the loss of host anti-predator behaviour results from direct manipulation by the parasite, or is a by-product (e.g. host immune response) or side effect of infection (e.g. energetic loss), remains controversial. To understand the physiological mechanisms that generate these behavioural changes, we quantified the behavioural profiles of experimentally infected fish and attempted to replicate these in non-parasitized fish by exposing them to treatments including immunity activation and fasting, or by pharmacologically inhibiting the stress axis. All fish were screened for the following behaviours: activity, water depth preference, sociability, phototaxis, anti-predator response and latency to feed. We were able to change individual behaviours with certain treatments. Our results suggest that the impact of S. solidus on the stickleback might be of a multifactorial nature. The behaviour changes observed in infected fish might result from the combined effects of modifying the serotonergic axis, lack of energy and activation of the immune system.


Assuntos
Comportamento Animal/fisiologia , Cestoides/fisiologia , Infecções por Cestoides/veterinária , Doenças dos Peixes/parasitologia , Smegmamorpha , Animais , Infecções por Cestoides/parasitologia , Feminino , Interações Hospedeiro-Parasita , Masculino , Smegmamorpha/imunologia , Smegmamorpha/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...