Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Chem Biol ; 19(2): 563-574, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38232960

RESUMO

The main protease Mpro, nsp5, of SARS-CoV-2 (SCoV2) is one of its most attractive drug targets. Here, we report primary screening data using nuclear magnetic resonance spectroscopy (NMR) of four different libraries and detailed follow-up synthesis on the promising uracil-containing fragment Z604 derived from these libraries. Z604 shows time-dependent binding. Its inhibitory effect is sensitive to reducing conditions. Starting with Z604, we synthesized and characterized 13 compounds designed by fragment growth strategies. Each compound was characterized by NMR and/or activity assays to investigate their interaction with Mpro. These investigations resulted in the four-armed compound 35b that binds directly to Mpro. 35b could be cocrystallized with Mpro revealing its noncovalent binding mode, which fills all four active site subpockets. Herein, we describe the NMR-derived fragment-to-hit pipeline and its application for the development of promising starting points for inhibitors of the main protease of SCoV2.


Assuntos
Descoberta de Drogas , SARS-CoV-2 , Descoberta de Drogas/métodos , SARS-CoV-2/metabolismo , Domínio Catalítico , Espectroscopia de Ressonância Magnética , Peptídeo Hidrolases/metabolismo , Inibidores de Proteases/metabolismo , Antivirais/farmacologia , Simulação de Acoplamento Molecular
2.
J Transl Med ; 21(1): 860, 2023 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-38012666

RESUMO

BACKGROUND: Prostate cancer (PC) is a heterogenous multifocal disease ranging from indolent to lethal states. For improved treatment-stratification, reliable approaches are needed to faithfully differentiate between high- and low-risk tumors and to predict therapy response at diagnosis. METHODS: A metabolomic approach based on high resolution magic angle spinning nuclear magnetic resonance (HR MAS NMR) analysis was applied on intact biopsies samples (n = 111) obtained from patients (n = 31) treated by prostatectomy, and combined with advanced multi- and univariate statistical analysis methods to identify metabolomic profiles reflecting tumor differentiation (Gleason scores and the International Society of Urological Pathology (ISUP) grade) and subtypes based on tumor immunoreactivity for Ki67 (cell proliferation) and prostate specific antigen (PSA, marker for androgen receptor activity). RESULTS: Validated metabolic profiles were obtained that clearly distinguished cancer tissues from benign prostate tissues. Subsequently, metabolic signatures were identified that further divided cancer tissues into two clinically relevant groups, namely ISUP Grade 2 (n = 29) and ISUP Grade 3 (n = 17) tumors. Furthermore, metabolic profiles associated with different tumor subtypes were identified. Tumors with low Ki67 and high PSA (subtype A, n = 21) displayed metabolite patterns significantly different from tumors with high Ki67 and low PSA (subtype B, n = 28). In total, seven metabolites; choline, peak for combined phosphocholine/glycerophosphocholine metabolites (PC + GPC), glycine, creatine, combined signal of glutamate/glutamine (Glx), taurine and lactate, showed significant alterations between PC subtypes A and B. CONCLUSIONS: The metabolic profiles of intact biopsies obtained by our non-invasive HR MAS NMR approach together with advanced chemometric tools reliably identified PC and specifically differentiated highly aggressive tumors from less aggressive ones. Thus, this approach has proven the potential of exploiting cancer-specific metabolites in clinical settings for obtaining personalized treatment strategies in PC.


Assuntos
Antígeno Prostático Específico , Neoplasias da Próstata , Masculino , Humanos , Antígeno Ki-67/metabolismo , Neoplasias da Próstata/patologia , Espectroscopia de Ressonância Magnética , Imageamento por Ressonância Magnética , Metabolômica
3.
Sci Adv ; 9(22): eadg7940, 2023 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-37267355

RESUMO

Apotosis is an essential process tightly regulated by the Bcl-2 protein family where proapoptotic Bax triggers cell death by perforating the mitochondrial outer membrane. Although intensively studied, the molecular mechanism by which these proteins create apoptotic pores remains elusive. Here, we show that Bax creates pores by extracting lipids from outer mitochondrial membrane mimics by formation of Bax/lipid clusters that are deposited on the membrane surface. Time-resolved neutron reflectometry and Fourier transform infrared spectroscopy revealed two kinetically distinct phases in the pore formation process, both of which were critically dependent on cardiolipin levels. The initially fast adsorption of Bax on the mitochondrial membrane surface is followed by a slower formation of pores and Bax-lipid clusters on the membrane surface. Our findings provide a robust molecular understanding of mitochondrial membrane perforation by cell-killing Bax protein and illuminate the initial phases of programmed cellular death.


Assuntos
Apoptose , Membranas Mitocondriais , Membranas Mitocondriais/metabolismo , Proteína X Associada a bcl-2/química , Proteína X Associada a bcl-2/metabolismo , Apoptose/fisiologia , Cardiolipinas/metabolismo
4.
Biophys J ; 121(23): 4517-4525, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36325615

RESUMO

Programmed mammalian cell death (apoptosis) is an essential mechanism in life that tightly regulates embryogenesis and removal of dysfunctional cells. In its intrinsic (mitochondrial) pathway, opposing members of the Bcl-2 (B cell lymphoma 2) protein family meet at the mitochondrial outer membrane (MOM) to control its integrity. Any imbalance can cause disorders, with upregulation of the cell-guarding antiapoptotic Bcl-2 protein itself being common in many, often incurable, cancers. Normally, the Bcl-2 protein itself is embedded in the MOM where it sequesters cell-killing apoptotic proteins such as Bax (Bcl-2-associated X protein) that would otherwise perforate the MOM and subsequently cause cell death. However, the molecular basis of Bcl-2's ability to recognize those apoptotic proteins via their common BH3 death motifs remains elusive due to the lack of structural insight. By employing nuclear magnetic resonance on fully functional human Bcl-2 protein in membrane-mimicking micelles, we identified glycine residues across all functional domains of the Bcl-2 protein and could monitor their residue-specific individual response upon the presence of a Bax-derived 36aa long BH3 domain. The observed chemical shift perturbations allowed us to determine the response and individual affinity of each glycine residue and provide an overall picture of the individual roles by which Bcl-2's functional domains engage in recognizing and inhibiting apoptotic proteins via their prominent BH3 motifs. This way, we provide a unique residue- and domain-specific insight into the molecular functioning of Bcl-2 at the membrane level, an insight also opening up for interfering with this cell-protecting mechanism in cancer therapy.


Assuntos
Proteínas Proto-Oncogênicas c-bcl-2 , Humanos
5.
Elife ; 112022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35131030

RESUMO

The α-pore-forming toxins (α-PFTs) from pathogenic bacteria damage host cell membranes by pore formation. We demonstrate a remarkable, hitherto unknown mechanism by an α-PFT protein from Vibrio cholerae. As part of the MakA/B/E tripartite toxin, MakA is involved in membrane pore formation similar to other α-PFTs. In contrast, MakA in isolation induces tube-like structures in acidic endosomal compartments of epithelial cells in vitro. The present study unravels the dynamics of tubular growth, which occurs in a pH-, lipid-, and concentration-dependent manner. Within acidified organelle lumens or when incubated with cells in acidic media, MakA forms oligomers and remodels membranes into high-curvature tubes leading to loss of membrane integrity. A 3.7 Å cryo-electron microscopy structure of MakA filaments reveals a unique protein-lipid superstructure. MakA forms a pinecone-like spiral with a central cavity and a thin annular lipid bilayer embedded between the MakA transmembrane helices in its active α-PFT conformation. Our study provides insights into a novel tubulation mechanism of an α-PFT protein and a new mode of action by a secreted bacterial toxin.


Assuntos
Proteínas de Bactérias/metabolismo , Citotoxinas/metabolismo , Bicamadas Lipídicas/química , Vibrio cholerae/patogenicidade , Linhagem Celular , Cólera/metabolismo , Microscopia Crioeletrônica , Humanos , Concentração de Íons de Hidrogênio , Estrutura Secundária de Proteína , Fatores de Virulência/metabolismo , Internalização do Vírus
6.
Biomol NMR Assign ; 16(1): 75-79, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34985724

RESUMO

The Hsp100 family member ClpB is a protein disaggregase which solubilizes and reactivates stress-induced protein aggregates in cooperation with the DnaK/Hsp70 chaperone system. In the pathogenic bacterium Francisella tularensis, ClpB is involved in type VI secretion system (T6SS) disassembly through depolymerization of the IglA-IglB sheath. This leads to recycling and reassembly of T6SS components and this process is essential for the virulence of the bacterium. Here we report the backbone chemical shift assignments and 15N relaxation-based backbone dynamics of the N-terminal substrate-binding domain of ClpB (1-156).


Assuntos
Proteínas de Escherichia coli , Francisella tularensis , Sistemas de Secreção Tipo VI , Proteínas de Escherichia coli/metabolismo , Francisella tularensis/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Ressonância Magnética Nuclear Biomolecular , Sistemas de Secreção Tipo VI/metabolismo , Virulência
7.
Molecules ; 26(5)2021 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-33800399

RESUMO

Evasion from programmed cell death (apoptosis) is the main hallmark of cancer and a major cause of resistance to therapy. Many tumors simply ensure survival by over-expressing the cell-protecting (anti-apoptotic) Bcl-2 membrane protein involved in apoptotic regulation. However, the molecular mechanism by which Bcl-2 protein in its mitochondrial outer membrane location protects cells remains elusive due to the absence of structural insight; and current strategies to therapeutically interfere with these Bcl-2 sensitive cancers are limited. Here, we present an NMR-based approach to enable structural insight into Bcl-2 function; an approach also ideal as a fragment-based drug discovery platform for further identification and development of promising molecular Bcl-2 inhibitors. By using solution NMR spectroscopy on fully functional intact human Bcl-2 protein in a membrane-mimicking micellar environment, and constructs with specific functions remaining, we present a strategy for structure determination and specific drug screening of functional subunits of the Bcl-2 protein as targets. Using 19F NMR and a specific fragment library (Bionet) with fluorinated compounds we can successfully identify various binders and validate our strategy in the hunt for novel Bcl-2 selective cancer drug strategies to treat currently incurable Bcl-2 sensitive tumors.


Assuntos
Neoplasias/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/fisiologia , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Proteínas Reguladoras de Apoptose/metabolismo , Descoberta de Drogas/métodos , Avaliação Pré-Clínica de Medicamentos , Humanos , Espectroscopia de Ressonância Magnética/métodos , Proteínas de Membrana/metabolismo , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Modelos Moleculares , Ligação Proteica/fisiologia , Proteínas Proto-Oncogênicas c-bcl-2/genética
8.
Ecol Evol ; 11(7): 3159-3183, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33841775

RESUMO

With accelerated land conversion and global heating at northern latitudes, it becomes crucial to understand, how life histories of animals in extreme environments adapt to these changes. Animals may either adapt by adjusting foraging behavior or through physiological responses, including adjusting their energy metabolism or both. Until now, it has been difficult to study such adaptations in free-ranging animals due to methodological constraints that prevent extensive spatiotemporal coverage of ecological and physiological data.Through a novel approach of combining DNA-metabarcoding and nuclear magnetic resonance (NMR)-based metabolomics, we aim to elucidate the links between diets and metabolism in Scandinavian moose Alces alces over three biogeographic zones using a unique dataset of 265 marked individuals.Based on 17 diet items, we identified four different classes of diet types that match browse species availability in respective ecoregions in northern Sweden. Individuals in the boreal zone consumed predominantly pine and had the least diverse diets, while individuals with highest diet diversity occurred in the coastal areas. Males exhibited lower average diet diversity than females.We identified several molecular markers indicating metabolic constraints linked to diet constraints in terms of food availability during winter. While animals consuming pine had higher lipid, phospocholine, and glycerophosphocholine concentrations in their serum than other diet types, birch- and willow/aspen-rich diets exhibit elevated concentrations of several amino acids. The individuals with highest diet diversity had increased levels of ketone bodies, indicating extensive periods of starvation for these individuals.Our results show how the adaptive capacity of moose at the eco-physiological level varies over a large eco-geographic scale and how it responds to land use pressures. In light of extensive ongoing climate and land use changes, these findings pave the way for future scenario building for animal adaptive capacity.

9.
Commun Biol ; 4(1): 507, 2021 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-33907308

RESUMO

B-cell lymphoma 2 (Bcl-2) proteins are the main regulators of mitochondrial apoptosis. Anti-apoptotic Bcl-2 proteins possess a hydrophobic tail-anchor enabling them to translocate to their target membrane and to shift into an active conformation where they inhibit pro-apoptotic Bcl-2 proteins to ensure cell survival. To address the unknown molecular basis of their cell-protecting functionality, we used intact human Bcl-2 protein natively residing at the mitochondrial outer membrane and applied neutron reflectometry and NMR spectroscopy. Here we show that the active full-length protein is entirely buried into its target membrane except for the regulatory flexible loop domain (FLD), which stretches into the aqueous exterior. The membrane location of Bcl-2 and its conformational state seems to be important for its cell-protecting activity, often infamously upregulated in cancers. Most likely, this situation enables the Bcl-2 protein to sequester pro-apoptotic Bcl-2 proteins at the membrane level while sensing cytosolic regulative signals via its FLD region.


Assuntos
Membrana Celular/metabolismo , Bicamadas Lipídicas/metabolismo , Espectroscopia de Ressonância Magnética/métodos , Difração de Nêutrons/métodos , Proteínas Proto-Oncogênicas c-bcl-2/química , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Humanos , Conformação Proteica
10.
J Pharm Biomed Anal ; 197: 113971, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33639525

RESUMO

In this pilot study, we carried out metabolic profiling of patients with rheumatoid arthritis (RA) starting therapy with biological disease-modifying antirheumatic drugs (bDMARDs). The main aim of the study was to assess the occurring metabolic changes associated with therapy success and metabolic pathways involved. In particular, the potential of the metabolomics profiles was evaluated as therapeutically valuable prognostic indicators of the effectiveness of bDMARD treatment to identify responders versus non-responders prior to implementing treatment. Plasma metabolomic profiles of twenty-five patients with RA prior bDMARD treatment and after three months of therapy were obtained by 1H NMR, liquid chromatography - mass spectrometry, and gas chromatography - mass spectrometry and evaluated by statistical and multivariate analyses. In the group of responders, significant differences in their metabolic patterns were seen after three months of the bDMARD therapy compared with profiles prior to treatment. We identified 24 metabolites that differed significantly between these two-time points mainly belonging to amino acid metabolism, peptides, lipids, cofactors, and vitamins and xenobiotics. Eleven metabolites differentiated responders versus non-responders before treatment. Additionally, N-acetylglucosamine and N-acetylgalactosamine (GlycA) and N-acetylneuraminic acid (GlycB) persisted significant in comparison responders to non-responders after three months of therapy. Moreover, those two metabolites indicated prediction of response potential by results of receiver-operating characteristic (ROC) curve analysis. The applied analysis provides novel insights into the metabolic pathways involved in RA patient's response to bDMARD and therapy effectiveness. GlycA and GlycB are promising biomarkers to identify responding patients prior onset of bDMARD therapy.


Assuntos
Acetilgalactosamina/sangue , Artrite Reumatoide/sangue , Biomarcadores/sangue , Metabolômica , Ácido N-Acetilneuramínico/sangue , Adulto , Antirreumáticos/uso terapêutico , Artrite Reumatoide/tratamento farmacológico , Cromatografia Líquida de Alta Pressão , Feminino , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Espectroscopia de Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Projetos Piloto , Valor Preditivo dos Testes , Prognóstico , Curva ROC , Resultado do Tratamento
11.
Diagnostics (Basel) ; 10(11)2020 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-33187152

RESUMO

There is growing evidence that lymphatic system plays a pivotal role in the pathogenesis of hypertension. Here, for the first time, the metabolome of interstitial fluid is analyzed in patients with arterial hypertension. Due to ethical issues to obtain human interstitial fluid samples, this study included only oncological patients after axillary lymph node dissection (ALND). These patients were matched into hypertensive (n = 29) and normotensive (n = 35) groups with similar oncological status. Simultaneous evaluation of interstitial fluid, plasma, and urine was obtained by combining high-resolution proton nuclear magnetic resonance (1H NMR) spectroscopy with chemometric analysis. Orthogonal partial least squares discriminant analysis (OPLS-DA) provided a clear differentiation between the hypertension and normotensive group, with the discrimination visible in each biofluid. In interstitial fluid nine potential metabolomic biomarkers for hypertension could be identified (creatinine, proline, pyroglutamine, glycine, alanine, 1-methylhistidine, the lysyl group of albumin, threonine, lipids), seven distinct markers in plasma (creatinine, mannose, isobutyrate, glycine, alanine, lactate, acetate, ornithine), and seven respectively in urine (methylmalonate, citrulline, phenylacetylglycine, fumarate, citrate, 1-methylnicotinamide, trans-aconitate). Biomarkers in plasma and urine allowed for the identification of specific biochemical pathways involved in hypertension, as previously suggested. Analysis of the interstitial fluid metabolome provided additional biomarkers compared to plasma or urine. Those biomarkers reflected primarily alterations in the metabolism of lipids and amino acids, and indicated increased levels of oxidative stress/inflammation in patients with hypertension.

12.
BMC Cancer ; 20(1): 437, 2020 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-32423389

RESUMO

BACKGROUND: Prostate cancer (PC) can display very heterogeneous phenotypes ranging from indolent asymptomatic to aggressive lethal forms. Understanding how these PC subtypes vary in their striving for energy and anabolic molecules is of fundamental importance for developing more effective therapies and diagnostics. Here, we carried out an extensive analysis of prostate tissue samples to reveal metabolic alterations during PC development and disease progression and furthermore between TMPRSS2-ERG rearrangement-positive and -negative PC subclasses. METHODS: Comprehensive metabolomics analysis of prostate tissue samples was performed by non-destructive high-resolution magic angle spinning nuclear magnetic resonance (1H HR MAS NMR). Subsequently, samples underwent moderate extraction, leaving tissue morphology intact for histopathological characterization. Metabolites in tissue extracts were identified by 1H/31P NMR and liquid chromatography-mass spectrometry (LC-MS). These metabolomics profiles were analyzed by chemometric tools and the outcome was further validated using proteomic data from a separate sample cohort. RESULTS: The obtained metabolite patterns significantly differed between PC and benign tissue and between samples with high and low Gleason score (GS). Five key metabolites (phosphocholine, glutamate, hypoxanthine, arginine and α-glucose) were identified, who were sufficient to differentiate between cancer and benign tissue and between high to low GS. In ERG-positive PC, the analysis revealed several acylcarnitines among the increased metabolites together with decreased levels of proteins involved in ß-oxidation; indicating decreased acyl-CoAs oxidation in ERG-positive tumors. The ERG-positive group also showed increased levels of metabolites and proteins involved in purine catabolism; a potential sign of increased DNA damage and oxidative stress. CONCLUSIONS: Our comprehensive metabolomic analysis strongly indicates that ERG-positive PC and ERG-negative PC should be considered as different subtypes of PC; a fact requiring different, sub-type specific treatment strategies for affected patients.


Assuntos
Biomarcadores Tumorais/análise , Metaboloma , Proteínas de Fusão Oncogênica/genética , Neoplasias da Próstata/patologia , Seguimentos , Humanos , Espectroscopia de Ressonância Magnética , Masculino , Gradação de Tumores , Prostatectomia , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/cirurgia
13.
Protein Expr Purif ; 172: 105628, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32209420

RESUMO

Programmed cell death (apoptosis) is an essential mechanism in life that tightly regulates embryogenesis and removal of harmful cells. Besides an extrinsic pathway, an intrinsic (mitochondrial) apoptotic pathway exists where mitochondria are actively involved in cellular clearance in response to internal stress signals. Pro-apoptotic (death) and anti-apoptotic (survival) members of the B cell CLL/lymphoma-2 (Bcl-2) protein family meet at the mitochondrion's surface where they accurately regulate apoptosis. Overexpression of the anti-apoptotic Bcl-2 protein is a hallmark for many types of cancers and in particular for many treatment resistant tumors. Bcl-2 is a membrane protein residing in the mitochondrial outer membrane. Due to its typical membrane protein features including very limited solubility, it is difficult to express and to purify. Therefore, most biophysical and structural studies have used truncated, soluble versions. However, to understand its membrane-coupled function and structure, access to sufficient amount of full-length human Bcl-2 protein is a necessity. Here, we present a novel, E. coli based approach for expression and purification of preparative amounts of the full-length human isoform 2 of Bcl-2 (Bcl-2(2)), solubilized in detergent micelles, which allows for easy exchange of the detergent.


Assuntos
Expressão Gênica , Proteínas de Membrana , Proteínas Proto-Oncogênicas c-bcl-2 , Escherichia coli/genética , Escherichia coli/metabolismo , Humanos , Proteínas de Membrana/biossíntese , Proteínas de Membrana/química , Proteínas de Membrana/genética , Proteínas de Membrana/isolamento & purificação , Proteínas Proto-Oncogênicas c-bcl-2/biossíntese , Proteínas Proto-Oncogênicas c-bcl-2/química , Proteínas Proto-Oncogênicas c-bcl-2/isolamento & purificação , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação
14.
Protein Expr Purif ; 158: 20-26, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30738180

RESUMO

Mitochondria-mediated apoptosis (programmed cell death) involves a sophisticated signaling and regulatory network that is regulated by the Bcl-2 protein family. Members of this family have either pro- or anti-apoptotic functions. An important pro-apoptotic member of this family is the cytosolic Bax. This protein is crucial for the onset of apoptosis by perforating the mitochondrial outer membrane (MOM). This process can be seen as point of no return, since disintegration of the MOM leads to the release of apotogenic factors such as cytochrome c into the cytosol triggering the activation of caspases and subsequent apoptotic steps. Bax is able to interact with the MOM with both its termini, making it inherently difficult to express in E. coli. In this study, we present a novel approach to express and purify full-length Bax with significantly increased yields, when compared to the commonly applied strategy. Using a double fusion approach with an N-terminal GST-tag and a C-terminal Intein-CBD-tag, we were able to render both Bax termini inactive and prevent disruptive interactions from occurring during gene expression. By deploying an Intein-CBD-tag at the C-terminus we were further able to avoid the introduction of any artificial residues, hence ensuring the native like activity of the membrane-penetrating C-terminus of Bax. Further, by engineering a His6-tag to the C-terminus of the CBD-tag we greatly improved the robustness of the purification procedure. We report yields for pure, full-length Bax protein that are increased by an order of magnitude, when compared to commonly used Bax expression protocols.


Assuntos
Expressão Gênica , Proteínas Recombinantes de Fusão , Proteína X Associada a bcl-2 , Cristalografia por Raios X , Humanos , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/isolamento & purificação , Proteína X Associada a bcl-2/biossíntese , Proteína X Associada a bcl-2/química , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/isolamento & purificação
15.
Sci Rep ; 7(1): 5460, 2017 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-28710349

RESUMO

It is a fundamental question in cell biology and biophysics whether sphingomyelin (SM)- and cholesterol (Chol)- driven nanodomains exist in living cells and in model membranes. Biophysical studies on model membranes revealed SM and Chol driven micrometer-sized liquid-ordered domains. Although the existence of such microdomains has not been proven for the plasma membrane, such lipid mixtures have been often used as a model system for 'rafts'. On the other hand, recent super resolution and single molecule results indicate that the plasma membrane might organize into nanocompartments. However, due to the limited resolution of those techniques their unambiguous characterization is still missing. In this work, a novel combination of Förster resonance energy transfer and Monte Carlo simulations (MC-FRET) identifies directly 10 nm large nanodomains in liquid-disordered model membranes composed of lipid mixtures containing SM and Chol. Combining MC-FRET with solid-state wide-line and high resolution magic angle spinning NMR as well as with fluorescence correlation spectroscopy we demonstrate that these nanodomains containing hundreds of lipid molecules are fluid and disordered. In terms of their size, fluidity, order and lifetime these nanodomains may represent a relevant model system for cellular membranes and are closely related to nanocompartments suggested to exist in cellular membranes.

16.
Biophys J ; 112(10): 2147-2158, 2017 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-28538152

RESUMO

Mitochondria are crucial compartments of eukaryotic cells because they function as the cellular power plant and play a central role in the early stages of programmed cell death (apoptosis). To avoid undesired cell death, this apoptotic pathway is tightly regulated by members of the Bcl-2 protein family, which interact on the external surface of the mitochondria, i.e., the mitochondrial outer membrane (MOM), and modulate its permeability to apoptotic factors, controlling their release into the cytosol. A growing body of evidence suggests that the MOM lipids play active roles in this permeabilization process. In particular, oxidized phospholipids (OxPls) formed under intracellular stress seem to directly induce apoptotic activity at the MOM. Here we show that the process of MOM pore formation is sensitive to the type of OxPls species that are generated. We created MOM-mimicking liposome systems, which resemble the cellular situation before apoptosis and upon triggering of oxidative stress conditions. These vesicles were studied using 31P solid-state magic-angle-spinning nuclear magnetic resonance spectroscopy and differential scanning calorimetry, together with dye leakage assays. Direct polarization and cross-polarization nuclear magnetic resonance experiments enabled us to probe the heterogeneity of these membranes and their associated molecular dynamics. The addition of apoptotic Bax protein to OxPls-containing vesicles drastically changed the membranes' dynamic behavior, almost completely negating the previously observed effect of temperature on the lipids' molecular dynamics and inducing an ordering effect that led to more cooperative membrane melting. Our results support the hypothesis that the mitochondrion-specific lipid cardiolipin functions as a first contact site for Bax during its translocation to the MOM in the onset of apoptosis. In addition, dye leakage assays revealed that different OxPls species in the MOM-mimicking vesicles can have opposing effects on Bax pore formation.


Assuntos
Apoptose/fisiologia , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Proteína X Associada a bcl-2/metabolismo , Varredura Diferencial de Calorimetria , Cardiolipinas/metabolismo , Permeabilidade da Membrana Celular , Escherichia coli , Corantes Fluorescentes , Humanos , Bicamadas Lipídicas/química , Ressonância Magnética Nuclear Biomolecular , Oxirredução , Estresse Oxidativo/fisiologia , Fosfolipídeos/metabolismo , Temperatura , Lipossomas Unilamelares/química
17.
Cell Host Microbe ; 21(3): 376-389, 2017 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-28279347

RESUMO

The BabA adhesin mediates high-affinity binding of Helicobacter pylori to the ABO blood group antigen-glycosylated gastric mucosa. Here we show that BabA is acid responsive-binding is reduced at low pH and restored by acid neutralization. Acid responsiveness differs among strains; often correlates with different intragastric regions and evolves during chronic infection and disease progression; and depends on pH sensor sequences in BabA and on pH reversible formation of high-affinity binding BabA multimers. We propose that BabA's extraordinary reversible acid responsiveness enables tight mucosal bacterial adherence while also allowing an effective escape from epithelial cells and mucus that are shed into the acidic bactericidal lumen and that bio-selection and changes in BabA binding properties through mutation and recombination with babA-related genes are selected by differences among individuals and by changes in gastric acidity over time. These processes generate diverse H. pylori subpopulations, in which BabA's adaptive evolution contributes to H. pylori persistence and overt gastric disease.


Assuntos
Adesinas Bacterianas/metabolismo , Aderência Bacteriana , Mucosa Gástrica/microbiologia , Infecções por Helicobacter/microbiologia , Helicobacter pylori/fisiologia , Mucosa Gástrica/patologia , Infecções por Helicobacter/patologia , Concentração de Íons de Hidrogênio
18.
Biochim Biophys Acta ; 1858(6): 1288-97, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26947183

RESUMO

Mitochondria play a crucial role in programmed cell death via the intrinsic apoptotic pathway, which is tightly regulated by the B-cell CLL/lymphoma-2 (Bcl-2) protein family. Intracellular oxidative stress causes the translocation of Bax, a pro-apoptotic family member, to the mitochondrial outer membrane (MOM) where it induces membrane permeabilization. Oxidized phospholipids (OxPls) generated in the MOM during oxidative stress directly affect the onset and progression of mitochondria-mediated apoptosis. Here we use MOM-mimicking lipid vesicles doped with varying concentrations of 1-palmitoyl-2-azelaoyl-sn-glycero-3-phosphocholine (PazePC), an OxPl species known to significantly enhance Bax-membrane association, to investigate three key aspects of Bax's action at the MOM: 1) induction of Bax pores in membranes without additional mediator proteins, 2) existence of a threshold OxPl concentration required for Bax-membrane action and 3) mechanism by which PazePC disturbs membrane organization to facilitate Bax penetration. Fluorescence leakage studies revealed that Bax-induced leakage, especially its rate, increased with the vesicles' PazePC content without any detectable threshold neither for OxPl nor Bax. Moreover, the leakage rate correlated with the Bax to lipid ratio and the PazePC content. Solid state NMR studies and calorimetric experiments on the lipid vesicles confirmed that OxPl incorporation disrupted the membrane's organization, enabling Bax to penetrate into the membrane. In addition, 15N cross polarization (CP) and insensitive nuclei enhanced by polarization transfer (INEPT) MAS NMR experiments using uniformly (15)N-labeled Bax revealed dynamically restricted helical segments of Bax embedded in the membrane, while highly flexible protein segments were located outside or at the membrane surface.


Assuntos
Membranas Mitocondriais/metabolismo , Fosforilcolina/análogos & derivados , Proteína X Associada a bcl-2/metabolismo , Varredura Diferencial de Calorimetria , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Humanos , Oxirredução , Permeabilidade , Fosforilcolina/metabolismo , Espectroscopia de Prótons por Ressonância Magnética , Lipossomas Unilamelares
19.
J Photochem Photobiol B ; 152(Pt B): 383-94, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26051963

RESUMO

The serine type Deg/HtrA proteases are distributed in a wide range of organisms from Escherichia coli to humans. The cyanobacterium Synechocystis sp. PCC 6803 possesses three Deg protease orthologues: HtrA, HhoA and HhoB. Previously we compared Synechocystis 6803 wild type cells exposed to mild or severe stress conditions with a mutant lacking all three Deg proteases and demonstrated that stress had strong impact on the proteomes and metabolomes. To identify the biochemical processes, which this protease family is involved in, here we compared Synechocystis sp. PCC 6803 wild type cells with a mutant lacking all three Deg proteases grown under normal growth conditions (30°C and 40 µmol photons m(-2) s(-1)). Deletion of the Deg proteases lead to the down-regulation of proteins related to the biosynthesis of outer cell layers (e.g. the GDP mannose 4,6-dehydratase) and affected protein secretion. During the late growth phase of the culture Deg proteases were found to be secreted to the extracellular medium of the Synechocystis sp. PCC 6803 wild type strain. While cyanobacterial Deg proteases seem to act mainly in the periplasmic space, deletion of the three proteases influences the proteome and metabolome of the whole cell. Impairments in the outer cell layers of the triple mutant might explain the higher sensitivity toward light and oxidative stress, which was observed earlier by Barker and coworkers.


Assuntos
Serina Endopeptidases/metabolismo , Synechocystis/citologia , Synechocystis/enzimologia , Ativação Enzimática , Metabolômica , Mutação , Proteômica , Serina Endopeptidases/genética , Synechocystis/genética , Synechocystis/metabolismo
20.
Biophys J ; 107(8): 1950-1961, 2014 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-25418176

RESUMO

The inner membrane of Gram-negative bacteria is negatively charged, rendering positively charged cytoplasmic proteins in close proximity likely candidates for protein-membrane interactions. YscU is a Yersinia pseudotuberculosis type III secretion system protein crucial for bacterial pathogenesis. The protein contains a highly conserved positively charged linker sequence that separates membrane-spanning and cytoplasmic (YscUC) domains. Although disordered in solution, inspection of the primary sequence of the linker reveals that positively charged residues are separated with a typical helical periodicity. Here, we demonstrate that the linker sequence of YscU undergoes a largely electrostatically driven coil-to-helix transition upon binding to negatively charged membrane interfaces. Using membrane-mimicking sodium dodecyl sulfate micelles, an NMR derived structural model reveals the induction of three helical segments in the linker. The overall linker placement in sodium dodecyl sulfate micelles was identified by NMR experiments including paramagnetic relaxation enhancements. Partitioning of individual residues agrees with their hydrophobicity and supports an interfacial positioning of the helices. Replacement of positively charged linker residues with alanine resulted in YscUC variants displaying attenuated membrane-binding affinities, suggesting that the membrane interaction depends on positive charges within the linker. In vivo experiments with bacteria expressing these YscU replacements resulted in phenotypes displaying significantly reduced effector protein secretion levels. Taken together, our data identify a previously unknown membrane-interacting surface of YscUC that, when perturbed by mutations, disrupts the function of the pathogenic machinery in Yersinia.


Assuntos
Proteínas da Membrana Bacteriana Externa/química , Membrana Celular/química , Lipídeos de Membrana/química , Desdobramento de Proteína , Yersinia/química , Sequência de Aminoácidos , Proteínas da Membrana Bacteriana Externa/metabolismo , Sistemas de Secreção Bacterianos , Lipídeos de Membrana/metabolismo , Micelas , Simulação de Dinâmica Molecular , Dados de Sequência Molecular , Ligação Proteica , Estrutura Terciária de Proteína , Eletricidade Estática
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...