Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genes Environ ; 44(1): 20, 2022 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-35879744

RESUMO

Bisphenol-A (BPA) is an important environmental contaminant with adverse health effects suspected to be mediated through epigenetic mechanisms. We had reported that the FLO1-dependent flocculation of transgenic yeast expressing human DNA methyltransferase (DNMT yeast) is a useful tool in epigenotoxicology studies. In this report, we have investigated the effects of BPA in the presence of metabolic activation (S-9 mix) on the transcription level of the FLO1 gene in the DNMT yeast. In the presence of metabolic activation, BPA inhibited the intensity of green fluorescence reporter protein (GFP) driven by the FLO1 promoter. A metabolite of BPA, 4-methyl-2,4-bis(p-hydroxyphenyl) pent-1-ene (MBP), also exhibited similar inhibitory effect. Furthermore, BPA in the presence of S-9 mix had only a weak while MBP had no inhibitory effects on the expression of modified GFP reporter gene under the control of FLO1 promoter with reduced CpG motifs. Aforementioned behavior was confirmed by the inhibition of flocculation as well as FLO1 gene mRNA expression. In addition, the global DNA methylation level in the human HEK293 cells was also reduced by MBP. These results indicate that BPA metabolites have inhibitory effect on DNA methylation. Our approach offers a novel in vitro method for screening for chemicals that can alter the epigenome by a mechanism dependent on their metabolic activation.

2.
Artigo em Inglês | MEDLINE | ID: mdl-35483777

RESUMO

Sodium azide is a strong mutagen that has been successfully employed in mutation breeding of crop plants. In biological systems, it is metabolically converted to the proximate mutagen azidoalanine, which requires further bioactivation to a putative ultimate mutagen that remains elusive. The nature of the DNA modifications induced by azides leading to mutations is also unknown. Other mutagenic organic azido compounds seem to share the same bioactivation pathway to the ultimate mutagenic species as they induce point mutations dependent on the same DNA repair pathways. We investigated mutations induced by the representative mutagen 3-azido-1,2-propanediol (azidoglycerol, AZG) in the human TK6 cell line. Until now, azides have been considered to be non-mutagens and non-carcinogens in mammals, including humans, as judged only by the conventional clastogenicity chromosomal aberration types of bioassays. Here, we show the potent mutagenicity of AZG in cultured human cells, comparable to alkylating agents such as methyl methanesulfonate at concentrations with similar lethality. The potent ability of an organic azide to induce base substitutions in a mammalian system raises an alert with respect to human exposure to organic and inorganic azido compounds.


Assuntos
Azidas , Mutagênicos , Animais , Azidas/metabolismo , Azidas/toxicidade , Humanos , Mamíferos , Mutagênese , Testes de Mutagenicidade , Mutagênicos/metabolismo , Mutagênicos/toxicidade , Propilenoglicóis
3.
Mutagenesis ; 36(2): 155-164, 2021 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-33544859

RESUMO

DNA polymerase zeta (Polζ) is a heterotetramer composed of the catalytic subunit Rev3l, Rev7 and two subunits of Polδ (PolD2/Pol31 and PolD3/Pol32), and this polymerase exerts translesion DNA synthesis (TLS) in yeast. Because Rev3l knockout results in embryonic lethality in mice, the functions of Polζ need further investigation in vivo. Then, we noted the two facts that substitution of leucine 979 of yeast Rev3l with methionine reduces Polζ replication fidelity and that reporter gene transgenic rodents are able to provide the detailed mutation status. Here, we established gpt delta mouse knocked in the constructed gene encoding methionine instead of leucine at residue 2610 of Rev3l (Rev3l L2610M gpt delta mice), to clarify the role of Polζ in TLS of chemical-induced bulky DNA adducts in vivo. Eight-week-old gpt delta mice and Rev3l L2610M gpt delta mice were treated with benzo[a]pyrene (BaP) at 0, 40, 80, or 160 mg/kg via single intraperitoneal injection. At necropsy 31 days after treatment, lungs were collected for reporter gene mutation assays. Although the gpt mutant frequency was significantly increased by BaP in both mouse genotypes, it was three times higher in Rev3l L2610M gpt delta than gpt delta mice after treatment with 160 mg/kg BaP. The frequencies of G:C base substitutions and characteristic complex mutations were significantly increased in Rev3l L2610M gpt delta mice compared with gpt delta mice. The BaP dose-response relationship suggested that Polζ plays a central role in TLS when protective mechanisms against BaP mutagenesis, such as error-free TLS, are saturated. Overall, Polζ may incorporate incorrect nucleotides at the sites opposite to BaP-modified guanines and extend short DNA sequences from the resultant terminal mismatches only when DNA is heavily damaged.


Assuntos
Benzo(a)pireno/toxicidade , Dano ao DNA/efeitos dos fármacos , Reparo do DNA/efeitos dos fármacos , Replicação do DNA/efeitos dos fármacos , DNA/metabolismo , Mutagênese , Alanina Transaminase/genética , Animais , Domínio Catalítico , Adutos de DNA/metabolismo , DNA Polimerase Dirigida por DNA/fisiologia , Feminino , Pulmão/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout
4.
DNA Repair (Amst) ; 100: 103052, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33607474

RESUMO

DNA polymerase ζ (Pol ζ) is a specialized Pol that is involved in translesion DNA synthesis (TLS), in particular, in the extension of primer DNA after bypassing DNA lesions. Previously, we established human cells that express a variant form of Pol ζ with an amino acid change of leucine 2618 to methionine (L2618M) in the catalytic subunit REV3L (DNA Repair, 45, 34-43, 2016). This amino acid change made the cells more sensitive to the mutagenicity of benzo[a]pyrene diol epoxide (BPDE). In this study, we embedded BPDE-N2-guanine at a defined position in the supF gene on the shuttle plasmid and introduced it to REV3 L2618M cells or the wild-type (WT) cells to examine how far Pol ζ L2618M extends the primer DNA after bypassing the lesion. The adduct induced primarily G to T and G to C at the adducted site in both cell lines, but generated additional sequence changes such as base substitutions, deletions and additions in the extension patch much more often in REV3 L2618M cells than in the WT cells. Mutations in the extension patch in REV3 L2618M cells occurred most often within 10 bps from the adducted site. Then, the number of mutations gradually decreased and no mutations were observed between 30 and 40 bps from the lesion. We concluded that human Pol ζ L2618M and perhaps WT Pol ζ extend the primer DNA up to approximately 30 bps from the lesion in vivo. The possibility of involvement of Pol ζ L2618M in the insertion step of TLS is discussed.


Assuntos
Benzo(a)pireno/metabolismo , Domínio Catalítico , Adutos de DNA/metabolismo , Reparo do DNA , Replicação do DNA , Proteínas de Ligação a DNA/genética , DNA Polimerase Dirigida por DNA/genética , Mutação , Linhagem Celular , DNA/metabolismo , Proteínas de Ligação a DNA/metabolismo , DNA Polimerase Dirigida por DNA/metabolismo , Humanos
5.
Genes Environ ; 42: 14, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32211083

RESUMO

BACKGROUND: The standard Ames test strains owe their high sensitivity to chemical and physical mutagens to the episomal Y-family DNA polymerase RI encoded by the mucAB operon. The S. typhimurium test strains carry also another related samAB operon on a 60-kDa cryptic plasmid. In contrast to the chromosomally encoded Y-family DNA polymerases V and IV, these plasmid born polymerase genes have no direct counterpart in mammalian cells. By replicating damaged templates, DNA polymerases play a central role in mutagenesis and genome stability. It is therefore imperative to investigate their specificity to understand differences in mutagenesis between the prokaryotic versus eukaryotic (mammalian) systems. To this end we have isolated and separately expressed the DNA polymerase subunits encoded by the mucAB and samAB operons. After demonstrating how these enzymes control chemical and UV mutagenesis at the standard hisD3052 and hisG428 Ames test targets, we are now adding the third Ames test target hisG46 to the trilogy. RESULTS: Four new Ames tester strains based on the hisG46 target have been constructed expressing the activated DNA polymerase MucA' and SamA' accessory subunits combined with the MucB and SamB catalytical subunits under the control of lac promoter. These polymerase assemblies were substituted for the endogenous PolRI, PolV and SamAB polymerases present in the standard TA100 strain and tested for their abilities to promote chemically induced mutagenesis. SamA' + SamB has been able to promote mutagenesis induced by AF-2 and 1,8-DNP to higher extent than SamA' + MucB. The MucA' + MucB (PolRI*) more efficiently promoted MMS as well as spontaneous mutagenesis than its wild type counterpart but was less efficient for other mutagens including AFB1. Strikingly azide mutagenesis was inhibited by PolRI and also SamA'B. CONCLUSION: A new system for SOS-independent overexpression of the activated DNA polymerases RI and SamA'B and their chimeras in the hisG46 Ames test background has been established and validated with several representative mutagens. Overall, the TA100 strain showed the highest sensitivity towards most tested mutagens. The observed inhibition of azide mutagenesis by PolRI* suggests that this type of Y-family DNA polymerases can perform also "corrective" error free replication on a damaged DNA.

6.
Genes Environ ; 41: 10, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31061684

RESUMO

BACKGROUND: The MucA' and MucB proteins comprise the core of DNA polymerase RI which is a strong mutator utilized in mutagenicity assays such as the standard Ames test. A close relative DNA polymerase V, composed of the homologous UmuD' and UmuC proteins, is considered to be an ortholog of the mammalian DNA polymerase η. The catalytic subunits of these polymerases belong to the Y-family which specializes in the translesion DNA synthesis across various DNA adducts to rescue stalled chromosomal replication at the expense of mutations. Based on genetic evidence, DNA polymerase RI possesses the greatest ability to induce various types of mutations among all so far characterized members of the Y-superfamily. The exceptionally high mutagenic potential of MucA'B has been taken advantage of in numerous bacterial mutagenicity assays incorporating the conjugative plasmid pKM101 carrying the mucAB operon such as the Ames Test. RESULTS: We established new procedures for the purification of MucB protein as well as its accessory protein MucA' using the refolding techniques. The purified MucA' protein behaved as a molecular dimer which was fully stable in solution. The soluble monomeric form of MucB protein was obtained after refolding on a gel-filtration column and remained stable in a nondenaturing buffer containing protein aggregation inhibitors. Using the surface plasmon resonance technique, we demonstrated that the purified MucA' and MucB proteins interacted and that MucB protein preferentially bound to single-stranded DNA. In addition, we revealed that MucB protein interacted with the ß-subunit of DNA polymerase III holoenzyme of E. coli. CONCLUSION: The MucA' and MucB proteins can be isolated from inclusion bodies and solubilized in vitro. The refolded MucB protein interacts with its MucA' partner as well as with DNA what suggests it retains biological activity. The interaction of MucB with the processivity subunit of DNA polymerase III may imply the role of the subunit as an accessory protein to MucB during the translesion DNA synthesis.

7.
Mutagenesis ; 34(2): 173-180, 2019 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-30852619

RESUMO

The mycotoxin ochratoxin A (OTA) is considered to be a human carcinogen. However, the mode of its carcinogenetic action has not been elucidated. Recently, it has become evident that epigenetic changes influence the risk of developing cancer. Since it has been revealed that the yeast flocculation displayed by the strains transformed with human DNA methyltransferases (DNMT) can be regulated by epigenetic mechanisms, we examined the effect of OTA on the transcription level of FLO1, which mediates the flocculation phenotype. OTA but not a non-carcinogenetic mycotoxin deoxynivalenol (DON) inhibited the intensity of GFP fluorescence under the transcriptional regulation of FLO1 promoter in a dose-dependent manner. At the same time, OTA had no effect on the reporter activity under the control of modified FLO1 promoter with reduced CpG motifs. In addition, it was confirmed that the flocculation and FLO1 mRNA of DNMT gene-transformed yeast (DNMT yeast) were decreased by OTA. In vitro methylation assay using a bacterial DNMT revealed an inhibitory effect of OTA on the DNMT activity, and OTA treatment reduced the frequency of abnormally shaped nuclei which were often observed in DNMT yeast. These results suggest that the carcinogenicity of OTA may involve inhibition of DNMT-mediated epigenetic regulation.


Assuntos
Carcinógenos/toxicidade , DNA (Citosina-5-)-Metiltransferase 1/antagonistas & inibidores , Ocratoxinas/toxicidade , DNA (Citosina-5-)-Metiltransferase 1/genética , DNA (Citosina-5-)-Metiltransferase 1/metabolismo , Metilação de DNA/efeitos dos fármacos , Epigênese Genética , Floculação/efeitos dos fármacos , Genes Reporter/efeitos dos fármacos , Lectinas de Ligação a Manose/genética , Lectinas de Ligação a Manose/metabolismo , Regiões Promotoras Genéticas , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Tricotecenos/farmacologia
8.
Artigo em Inglês | MEDLINE | ID: mdl-29704992

RESUMO

DNA polymerases play a key role in mutagenesis by performing translesion DNA synthesis (TLS). The Y-family of DNA polymerases comprises several evolutionarily conserved families, specializing in TLS of different DNA adducts. Exocyclic etheno and propano DNA adducts are among the most common endogenous DNA lesions induced by lipid peroxidation reactions triggered by oxidative stress. We have investigated the participation of two enterobacterial representatives of the PolIV and PolV branches of Y-family DNA polymerases in mutagenesis by two model lipid peroxidation derived genotoxins, glyoxal and crotonaldehyde. Mutagenesis by the ethano adduct (glyoxal-derived) and the propano adduct (crontonaldehyde-derived) at the GC target in the Ames test depended exclusively on PolV type DNA polymerases such as PolRI. In contrast, PolIV suppressed glyoxal and, even more, crotonaldehyde mutagenesis, as detected by enzyme overexpression and gene knockout approaches. We propose that DNA polymerase IV, which is the mammalian DNA polymerase κ ortholog, acts as a housekeeper protecting the genome from lipoxidative stress.


Assuntos
RNA Polimerases Dirigidas por DNA/metabolismo , Mutagênese , Mutagênicos/toxicidade , Aldeídos/toxicidade , Adutos de DNA , Dano ao DNA , Replicação do DNA , Glioxal/toxicidade , Peroxidação de Lipídeos
9.
FEMS Microbiol Lett ; 364(22)2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-29069387

RESUMO

We have previously reported that the transformation of the budding yeast with plasmids encoding the human DNA methyltransferases DNMT1 and DNMT3B cDNAs induces the mRNA of flocculin gene FLO1 and the flocculation phenotype. In the present study, we evaluated the effect of DNMT inhibitor in the transformed yeasts using a FLO1 promoter-based green fluorescent protein (GFP) reporter gene assay. The DNMT inhibitor, 5-aza-2΄-deoxycytidine (5AZ), decreased GFP fluorescence driven by FLO1 promoter in DNMT-genes transformed yeast (DNMT yeast). Surprisingly, the GFP activity driven by cytosine-phosphate-guanine (CpG) motif-reduced FLO1 promoter decreased both in DNMTs gene-transformed and control strains. Yeast cells transformed with expression vector encoding a maintenance enzyme DNMT1 cDNA showed a flocculation phenotype that was associated with an enhanced mRNA level of FLO1. Bisulfite sequencing revealed methylated CpG sites at the FLO1 promoter in a control strain not expressing any DNMT transgenes, and no detectable methylation at the sites was observed in cells treated with 5AZ. These results suggest that the FLO1 promoter is endogenously de novo methylated leading to the activation of FLO1 gene transcription. Furthermore, the methylation level at the FLO1 promoter is responsible for the significant differences in FLO1 promoter-driven expression of GFP in DNMT yeast.


Assuntos
DNA (Citosina-5-)-Metiltransferase 1/genética , DNA (Citosina-5-)-Metiltransferases/genética , Metilação de DNA/genética , Lectinas de Ligação a Manose/genética , Regiões Promotoras Genéticas/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Biotecnologia , Clonagem Molecular , DNA (Citosina-5-)-Metiltransferase 1/metabolismo , DNA (Citosina-5-)-Metiltransferases/metabolismo , Humanos , DNA Metiltransferase 3B
10.
Environ Mol Mutagen ; 58(9): 644-653, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29076178

RESUMO

DNA polymerase kappa (Polk) is a specialized DNA polymerase involved in translesion DNA synthesis. To understand the protective roles against genotoxins in vivo, we established inactivated Polk knock-in gpt delta (inactivated Polk KI) mice that possessed reporter genes for mutations and expressed inactive Polk. In this study, we examined genotoxicity of benzo[a]pyrene (BP) to determine whether Polk actually suppressed BP-induced genotoxicity as predicted by biochemistry and in vitro cell culture studies. Seven-week-old inactivated Polk KI and wild-type (WT) mice were treated with BP at doses of 5, 15, or 50 mg/(kg·day) for three consecutive days by intragastric gavage, and mutations in the colon and micronucleus formation in the peripheral blood were examined. Surprisingly, no differences were observed in the frequencies of mutations and micronucleus formation at 5 or 50 mg/kg doses. Inactivated Polk KI mice exhibited approximately two times higher gpt mutant frequency than did WT mice only at the 15 mg/kg dose. The frequency of micronucleus formation was slightly higher in inactivated Polk KI than in WT mice at the same dose, but it was statistically insignificant. The results suggest that Polk has a limited ability to suppress BP-induced genotoxicity in the colon and bone marrow and also that the roles of specialized DNA polymerases in mutagenesis and carcinogenesis should be examined not only by in vitro assays but also by in vivo mouse studies. We also report the spontaneous mutagenesis in inactivated Polk KI mice at young and old ages. Environ. Mol. Mutagen. 58:644-653, 2017. © 2017 Wiley Periodicals, Inc.


Assuntos
Benzo(a)pireno/toxicidade , Dano ao DNA/efeitos dos fármacos , DNA Polimerase Dirigida por DNA/genética , DNA/genética , Animais , DNA/biossíntese , DNA/efeitos dos fármacos , Dano ao DNA/genética , Reparo do DNA/efeitos dos fármacos , Reparo do DNA/genética , Replicação do DNA/efeitos dos fármacos , Replicação do DNA/genética , Camundongos , Mutagênese/efeitos dos fármacos , Mutagênese/genética , Mutação
11.
Artigo em Inglês | MEDLINE | ID: mdl-28622825

RESUMO

Polyunsaturated fatty acids (PUFA) represent one of the main building blocks of cellular membranes and their varying composition impacts lifespan as well as susceptibility to cancer and other degenerative diseases. Increased intake of ω-3 PUFA is taught to compensate for the abundance of ω-6 PUFA in modern human diet and prevent cardiocirculatory diseases. However, highly unsaturated PUFA of marine and seed origin easily oxidize to aldehydic products which form DNA adducts. With increased PUFA consumption it is prudent to re-evaluate ω-3 PUFA safety and the genotoxic hazards of their metabolites. We have used the standard Ames test to examine the mutagenicity of 2 hexenals derived from lipid peroxidation of the common ω-3 PUFA in human diet and tissues. Both 4-hydroxyhexenal and 2-hexenal derived from the ω-3 docosahexaenoic and α-linolenic acid, respectively, induced base substitutions in the TA104 and TA100 Ames strains in a dose dependent manner. Their mutagenicity was dependent on the Y-family DNA polymerase RI and they did not induce other types of mutations such as the -2 and -1 frameshifts in the TA98 and TA97 strains. Our results expand previous findings about the mutagenicity of related ω-3 peroxidation product 4-oxohexenal and raise alert that overuse of ω-3 rich oils may have adverse effect on genome stability.


Assuntos
Aldeídos/toxicidade , Ácidos Graxos Ômega-3/toxicidade , Mutagênicos/toxicidade , Salmonella typhimurium/efeitos dos fármacos , Aldeídos/metabolismo , Relação Dose-Resposta a Droga , Ácidos Graxos Ômega-3/metabolismo , Instabilidade Genômica/efeitos dos fármacos , Testes de Mutagenicidade , Mutagênicos/metabolismo , Salmonella typhimurium/genética
12.
Mutagenesis ; 32(4): 429-435, 2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28431147

RESUMO

Recently, we have reported that the FLO1-mediated flocculation levels of yeast are affected by an epigenetic mutagen, alizarin. Alizarin promoted flocculation and reduced the bulk levels of histone H3 in yeast cells. Since alizarin has been known to possess carcinogenesis-promoting properties, it is important to estimate the effect of alizarin-related compounds on epigenome as measured by the flocculation of yeast. In this study, we examined the effects of two anthracene-derived compounds other than alizarin on the flocculation level of yeast. Purpurin significantly promoted the flocculation in a dose-dependent manner. While, quinizarin had a weaker promoting effect than purpurin. The strain treated with purprin showed FLO1 mRNA upregulation and reduced histone H3 expression similarly to alizarin. We also confirmed that the purprin-treated cells frequently exhibited abnormally shaped nuclei. Moreover, fluorescence intensities of green fluorescent protein (GFP) reporter under the FLO1 promoter control were dose-dependently increased by purprin and alizarin in the yeast. Taken together, these results suggest that the GFP reporter gene system utilising the FLO1 promoter is useful for the detection of epigenetic mutagens including anthracene-derived compounds.


Assuntos
Antracenos/farmacologia , Epigênese Genética/efeitos dos fármacos , Mutagênicos/farmacologia , Regiões Promotoras Genéticas , Floculação , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Genes Reporter , Proteínas de Fluorescência Verde/biossíntese , Proteínas de Fluorescência Verde/genética , Proteínas de Membrana/genética , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
13.
Mutat Res ; 791-792: 35-41, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27591392

RESUMO

Translesion DNA synthesis (TLS) is a cellular defense mechanism against genotoxins. Defects or mutations in specialized DNA polymerases (Pols) involved in TLS are believed to result in hypersensitivity to various genotoxic stresses. Here, DNA polymerase ζ (Pol ζ)-deficient (KO: knockout) and Pol ζ catalytically dead (CD) human cells were established and their sensitivity towards cytotoxic activities of various genotoxins was examined. The CD cells were engineered by altering the DNA sequence encoding two amino acids essential for the catalytic activity of Pol ζ, i.e., D2781 and D2783, to alanines. Both Pol ζ KO and CD cells displayed a prolonged cell cycle and higher incidence of micronuclei formation than the wild-type (WT) cells in the absence of exogenous genotoxic treatments, and the order of abnormality was CD>KO>WT cells. Both KO and CD cells exhibited higher sensitivity towards the killing effects of benzo[a]pyrene diol epoxide, mitomycin C, potassium bromate, N-methyl-N'-nitro-N-nitrosoguanidine, and ultraviolet C irradiation than WT cells, and there were no differences between the sensitivities of KO and CD cells. Interestingly, neither KO nor CD cells were sensitive to the cytotoxic effects of hydrogen peroxide. Since KO and CD cells displayed similar sensitivities to the genotoxins, we employed only KO cells to further examine their sensitivity to other genotoxic agents. KO cells were more sensitive to the cytotoxicity of 4-nitroquinoline N-oxide, styrene oxide, cisplatin, methyl methanesulfonate, and ethyl methanesulfonate than WT cells. However, the KO cells displayed sensitivity camptothecin, etoposide, bleomycin, hydroxyurea, crotonealdehyde, and methylglyoxal in a manner similar to the WT cells. Our results suggest that Pol ζ plays an important role in the protection of human cells by carrying out TLS across bulky DNA adducts and cross-links, but has no or limited role in the protection against strand-breaks in DNA.


Assuntos
Adutos de DNA/biossíntese , Dano ao DNA , DNA Catalítico/genética , Proteínas de Ligação a DNA/fisiologia , DNA Polimerase Dirigida por DNA/fisiologia , Técnicas de Cultura de Células , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/genética , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Adutos de DNA/genética , Proteínas de Ligação a DNA/genética , DNA Polimerase Dirigida por DNA/genética , Técnicas de Inativação de Genes , Humanos , Micronúcleos com Defeito Cromossômico/induzido quimicamente , Micronúcleos com Defeito Cromossômico/estatística & dados numéricos , Mutagênicos/toxicidade
14.
Mutagenesis ; 31(6): 687-693, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27549112

RESUMO

We have previously reported that flocculation of a yeast co-transformed with the human DNA methyltransferase 1 (DNMT1) and DNMT3B genes was inhibited by DNMT inhibitors. It is well known that epigenetic mutagens can disturb nucleosome positioning via DNA methylation and/or histone modification. In this study we first examined the effects of trichostatin A (TSA), a histone deacetylase inhibitor, on the flocculation level of yeast. TSA dose-dependently promoted the flocculation exhibited by the yeast transformed with the DNMT genes or empty vectors. Furthermore, TSA induced the expression of the flocculin-encoding gene FLO1 The anthracene-derived alizarin, a natural madder root dye, has a potential for carcinogenesis promotion; however, the mode of action has not been elucidated. It is considered that epigenetic changes can promote cancer. Alizarin but not anthracene enhanced the flocculation level of the yeast. Similar to TSA, alizarin also upregulated FLO1 mRNA. Surprisingly, western blotting indicated that alizarin, but not anthracene, reduced the level of histone H3 in yeast, and alizarin-treated cells frequently displayed abnormally shaped nuclei. These findings suggest that alizarin uniquely influences nucleosome structure. Taken together with our previous findings, this study suggests that the DNMT gene-transformed yeast strains are a useful tool for screening various classes of epigenetic mutagens.


Assuntos
Antraquinonas/farmacologia , DNA (Citosina-5-)-Metiltransferases/antagonistas & inibidores , Epigênese Genética/efeitos dos fármacos , Lectinas de Ligação a Manose/genética , Testes de Mutagenicidade/métodos , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/efeitos dos fármacos , Antraquinonas/toxicidade , DNA (Citosina-5-)-Metiltransferase 1 , DNA (Citosina-5-)-Metiltransferases/metabolismo , Metilação de DNA , Regulação Fúngica da Expressão Gênica , Histonas/metabolismo , Ácidos Hidroxâmicos/farmacologia , Ácidos Hidroxâmicos/toxicidade , Mutagênicos/farmacologia , Mutagênicos/toxicidade , Saccharomyces cerevisiae/metabolismo , Regulação para Cima
15.
DNA Repair (Amst) ; 45: 34-43, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27338670

RESUMO

Translesion DNA polymerases (TLS pols) play critical roles in defense mechanisms against genotoxic agents. The defects or mutations of TLS pols are predicted to result in hypersensitivity of cells to environmental mutagens. In this study, human cells expressing DNA polymerase ζ (Pol ζ) variants with low fidelity or weak catalytic activity have been established with Nalm-6-MSH+ cells and their sensitivity to mutagenicity and cytotoxicity of benzo[a]pyrene diol epoxide (BPDE) and ultraviolet-C light (UV-C) was examined. The low-fidelity mutants were engineered by knocking-in DNA sequences that direct changes of leucine 2618 to either phenylalanine (L2618F) or methionine (L2618M) of Pol ζ. The weak-catalytic-activity mutants were generated by knocking-in DNA sequences that direct changes of either tyrosine 2779 to phenylalanine (Y2779F) or aspartate 2781 to asparagine (D2781N). In addition, a +1 frameshift mutation, i.e., CCC to CCCC, was introduced in the coding region of the TK1 gene to measure the mutant frequencies. Doubling time and spontaneous TK mutant frequencies of the established cell lines were similar to those of the wild-type cells. The low-fidelity mutants displayed, however, higher sensitivity to the mutagenicity of BPDE and UV-C than the wild-type cells although their cytotoxic sensitivity was not changed. In contrast, the weak-catalytic-activity mutants were more sensitive to the cytotoxicity of BPDE and UV-C than the wild-type cells, and displayed much higher sensitivity to the clastogenicity of BPDE than the wild-type cells in an in vitro micronucleus assay. These results indicate that human Pol ζ is involved in TLS across DNA lesions induced by BPDE and UV-C and also that the TLS plays important roles in induction of mutations, clastogenicity and in cellular survival of the damaged human cells. Similarities and differences in in vivo roles of yeast and human Pol ζ in genome integrity are discussed.


Assuntos
Linfócitos B/metabolismo , Reparo do DNA , Proteínas de Ligação a DNA/genética , DNA Polimerase Dirigida por DNA/genética , DNA/genética , Timidina Quinase/genética , Substituição de Aminoácidos , Linfócitos B/efeitos dos fármacos , Linfócitos B/patologia , Linfócitos B/efeitos da radiação , Sequência de Bases , Benzopirenos/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular , DNA/metabolismo , Dano ao DNA , Proteínas de Ligação a DNA/metabolismo , DNA Polimerase Dirigida por DNA/metabolismo , Mutação da Fase de Leitura , Expressão Gênica , Humanos , Testes para Micronúcleos , Mutagênese Sítio-Dirigida , Mutagênicos/farmacologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Tolerância a Radiação , Saccharomyces cerevisiae , Timidina Quinase/metabolismo , Raios Ultravioleta
16.
Environ Mol Mutagen ; 56(8): 650-62, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26031400

RESUMO

DNA polymerase κ (Pol κ) is a specialized DNA polymerase involved in translesion DNA synthesis. Although its bypass activities across lesions are well characterized in biochemistry, its cellular protective roles against genotoxic insults are still elusive. To better understand the in vivo protective roles, we have established a human cell line deficient in the expression of Pol κ (KO) and another expressing catalytically dead Pol κ (CD), to examine the cytotoxic sensitivity to 11 genotoxins including ultraviolet C light (UV). These cell lines were established in a genetic background of Nalm-6-MSH+, a human lymphoblastic cell line that has high efficiency for gene targeting, and functional p53 and mismatch repair activities. We classified the genotoxins into four groups. Group 1 includes benzo[a]pyrene diolepoxide, mitomycin C, and bleomycin, where the sensitivity was equally higher in KO and CD than in the cell line expressing wild-type Pol κ (WT). Group 2 includes hydrogen peroxide and menadione, where hypersensitivity was observed only in KO. Group 3 includes methyl methanesulfonate and ethyl methanesulfonate, where hypersensitivity was observed only in CD. Group 4 includes UV and three chemicals, where the chemicals exhibited similar cytotoxicity to all three cell lines. The results suggest that Pol κ not only protects cells from genotoxic DNA lesions via DNA polymerase activities, but also contributes to genome integrity by acting as a non-catalytic protein against oxidative damage caused by hydrogen peroxide and menadione. The non-catalytic roles of Pol κ in protection against oxidative damage by hydrogen peroxide are discussed.


Assuntos
Dano ao DNA , DNA Polimerase Dirigida por DNA/metabolismo , Benzo(a)pireno/toxicidade , Linhagem Celular/efeitos dos fármacos , Linhagem Celular/efeitos da radiação , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Sobrevivência Celular/efeitos da radiação , Dano ao DNA/genética , DNA Polimerase Dirigida por DNA/genética , Teste de Complementação Genética , Humanos , Peróxido de Hidrogênio/toxicidade , Metanossulfonato de Metila/toxicidade , Mitomicina/toxicidade , Mutagênicos/química , Mutagênicos/toxicidade , Raios Ultravioleta , Vitamina K 3/toxicidade
17.
DNA Repair (Amst) ; 24: 113-121, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25303778

RESUMO

Translesion DNA synthesis (TLS) is an important pathway that avoids genotoxicity induced by endogenous and exogenous agents. DNA polymerase kappa (Polk) is a specialized DNA polymerase involved in TLS but its protective roles against DNA damage in vivo are still unclear. To better understand these roles, we have established knock-in mice that express catalytically-inactive Polk and crossbred them with gpt delta mice, which possess reporter genes for mutations. The resulting mice (inactivated Polk KI mice) were exposed to mitomycin C (MMC), and the frequency of point mutations, micronucleus formation in peripheral erythrocytes, and γH2AX induction in the bone marrow was determined. The inactivated Polk KI mice exhibited significantly higher frequency of mutations at CpG and GpG sites, micronucleated cells, and γH2AX foci-positive cells than did the Polk wild-type (Polk(+)) mice. Recovery from MMC-induced DNA damage, which was evaluated by γH2AX induction, was retarded in embryonic fibroblasts from the knock-in mice when compared to those from the Polk(+) mice. These results suggest that Polk mediates TLS, which suppresses point mutations and DNA double-strand breaks caused by intra- and interstrand cross-links induced by MMC treatment. The established knock-in mice are extremely useful to elucidate the in vivo roles of the catalytic activity of Polk in suppressing DNA damage that was induced by a variety of genotoxic stresses.


Assuntos
Reparo do DNA , Replicação do DNA , DNA Polimerase Dirigida por DNA/metabolismo , Mitomicina/farmacologia , Animais , Medula Óssea/efeitos dos fármacos , Ilhas de CpG , Reagentes de Ligações Cruzadas/farmacologia , Quebras de DNA , Dano ao DNA/efeitos dos fármacos , DNA Polimerase Dirigida por DNA/genética , Fibroblastos/efeitos dos fármacos , Histonas/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Testes para Micronúcleos , Taxa de Mutação
18.
DNA Repair (Amst) ; 15: 21-8, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24461735

RESUMO

Humans possess multiple specialized DNA polymerases that continue DNA replication beyond a variety of DNA lesions. DNA polymerase kappa (Pol κ) bypasses benzo[a]pyrene diolepoxide-N(2)-deoxyguanine (BPDE-N(2)-dG) DNA adducts in an almost error-free manner. In the previous work, we changed the amino acids close to the adducts in the active site and examined the bypass efficiency. The substitution of alanine for phenylalanine 171 (F171A) enhanced by 18-fold in vitro, the efficiencies of dCMP incorporation opposite (-)- and (+)-trans-anti-BPDE-N(2)-dG. In the present study, we established human cell lines that express wild-type Pol κ (POLK+/-), F171A (POLK F171A/-) or lack expression of Pol κ (POLK-/-) to examine the in vivo significance. These cell lines were generated with Nalm-6, a human pre-B acute lymphoblastic leukemia cell line, which has high efficiency for gene targeting. Mutations were analyzed with shuttle vectors having (-)- or (+)-trans-anti-BPDE-N(2)-dG in the supF gene. The frequencies of mutations were in the order of POLK-/->POLK+/->POLK F171A/- both in (-)- and (+)-trans-anti-BPDE-N(2)-dG. These results suggest that F171 may function as a molecular brake for bypass across BPDE-N(2)-dG by Pol κ and raise the possibility that the cognate substrates for Pol κ are not BP adducts in DNA but may be lesions in DNA induced by endogenous mutagens.


Assuntos
7,8-Di-Hidro-7,8-Di-Hidroxibenzo(a)pireno 9,10-óxido/análogos & derivados , Reparo do DNA , Replicação do DNA , DNA Polimerase Dirigida por DNA/genética , Desoxiguanosina/análogos & derivados , Substituição de Aminoácidos , Sequência de Bases , Domínio Catalítico , Linhagem Celular , Dano ao DNA , DNA Polimerase Dirigida por DNA/química , DNA Polimerase Dirigida por DNA/metabolismo , Desoxiguanosina/genética , Humanos , Mutagênese Sítio-Dirigida , Taxa de Mutação , Fenilalanina/genética
19.
Artigo em Inglês | MEDLINE | ID: mdl-24211442

RESUMO

Sodium azide is a strong mutagen which has been successfully employed in mutation breeding of crop plants. In biological systems, it is metabolized to azidoalanine, but further bioactivation to a putative ultimate mutagen as well as the nature of the induced DNA modifications leading to mutations remain elusive. In this study, mutations induced in the CAN1 gene of yeast Saccharomyces cerevisiae by the representative mutagen 3-azido-1,2-propanediol (azidoglycerol, AZG) have been sequenced. Analysis of the forward mutation spectrum to canavanine resistance revealed that AZG induced nearly exclusively G:C to A:T transitions. AZG also induced reversions to tryptophan prototrophy by base-pair substitutions in a dose-dependent manner. This unusual mutational specificity may be shared by other organic azido compounds.


Assuntos
Azidas/farmacologia , Mutagênese/efeitos dos fármacos , Mutação/efeitos dos fármacos , Propilenoglicóis/farmacologia , Saccharomyces cerevisiae/genética , Sistemas de Transporte de Aminoácidos Básicos/genética , Canavanina/farmacologia , Análise Mutacional de DNA , Relação Dose-Resposta a Droga , Farmacorresistência Fúngica/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/genética , Triptofano/farmacologia
20.
EMBO J ; 32(15): 2172-85, 2013 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-23799366

RESUMO

Formation of primed single-stranded DNA at stalled replication forks triggers activation of the replication checkpoint signalling cascade resulting in the ATR-mediated phosphorylation of the Chk1 protein kinase, thus preventing genomic instability. By using siRNA-mediated depletion in human cells and immunodepletion and reconstitution experiments in Xenopus egg extracts, we report that the Y-family translesion (TLS) DNA polymerase kappa (Pol κ) contributes to the replication checkpoint response and is required for recovery after replication stress. We found that Pol κ is implicated in the synthesis of short DNA intermediates at stalled forks, facilitating the recruitment of the 9-1-1 checkpoint clamp. Furthermore, we show that Pol κ interacts with the Rad9 subunit of the 9-1-1 complex. Finally, we show that this novel checkpoint function of Pol κ is required for the maintenance of genomic stability and cell proliferation in unstressed human cells.


Assuntos
Replicação do DNA/fisiologia , DNA Polimerase Dirigida por DNA/metabolismo , Instabilidade Genômica/fisiologia , Proteínas Quinases/metabolismo , Proteínas de Xenopus/metabolismo , Animais , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proliferação de Células , Quinase 1 do Ponto de Checagem , DNA Polimerase Dirigida por DNA/genética , Células HeLa , Humanos , Proteínas Quinases/genética , Proteínas de Xenopus/genética , Xenopus laevis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...