Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 15(18)2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36143704

RESUMO

There are only a few cost-effective solutions for coating applications in combined mechanical loading and corrosive environments. Stainless steel AISI 304 has the potential to fill this niche, showing excellent corrosion resistance while utilizing the deformation-induced phase transformation from γ-austenite to α'-martensite, which results in an increase in strength. However, it is not known whether this can occur in laser cladded material. Therefore, laser cladded AISI 304 coatings in as-cladded condition and after heat treatment at 1100 °C for 60 min were investigated before and after bending deformation, by means of light microscopy, energy-dispersive X-ray spectroscopy and electron backscatter diffraction. It was shown that due to the dendritic microstructure accompanied by an inhomogeneous distribution of the main alloying elements (Cr and Ni), no deformation-induced phase transformation occurred in the as-cladded coating. The applied approach with subsequent solution heat treatment at 1100 °C for 60 min resulted in a homogeneous γ-austenite microstructure, so that a deformation-induced martensitic transformation (DIMT) could occur in the coatings. However, the volume fraction of martensite that had been formed locally at individual shear bands was rather low, which can be possibly attributed to the high Ni content of the feedstock, stabilizing the γ-austenite microstructure. This study shows the possibility of exploiting the DIMT mechanism in heat-treated laser-cladded AISI 304 coatings.

2.
Nat Chem ; 14(6): 701-712, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35469007

RESUMO

Microorganisms contribute to the biology and physiology of eukaryotic hosts and affect other organisms through natural products. Xenorhabdus and Photorhabdus (XP) living in mutualistic symbiosis with entomopathogenic nematodes generate natural products to mediate bacteria-nematode-insect interactions. However, a lack of systematic analysis of the XP biosynthetic gene clusters (BGCs) has limited the understanding of how natural products affect interactions between the organisms. Here we combine pangenome and sequence similarity networks to analyse BGCs from 45 XP strains that cover all sequenced strains in our collection and represent almost all XP taxonomy. The identified 1,000 BGCs belong to 176 families. The most conserved families are denoted by 11 BGC classes. We homologously (over)express the ubiquitous and unique BGCs and identify compounds featuring unusual architectures. The bioactivity evaluation demonstrates that the prevalent compounds are eukaryotic proteasome inhibitors, virulence factors against insects, metallophores and insect immunosuppressants. These findings explain the functional basis of bacterial natural products in this tripartite relationship.


Assuntos
Produtos Biológicos , Nematoides , Photorhabdus , Xenorhabdus , Animais , Humanos , Insetos/genética , Insetos/microbiologia , Família Multigênica , Nematoides/genética , Nematoides/microbiologia , Photorhabdus/genética , Simbiose/genética , Xenorhabdus/genética
3.
Appl Environ Microbiol ; 87(3)2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33218994

RESUMO

Ustilago maydis is a phytopathogenic fungus responsible for corn smut disease. Although it is a very well-established model organism for the study of plant-microbe interactions, its potential to produce specialized metabolites, which might contribute to this interaction, has not been studied in detail. By analyzing the U. maydis genome, we identified a biosynthetic gene cluster whose activation led to the production of a black melanin pigment. Single deletion mutants of the cluster genes revealed that five encoded enzymes are required for the accumulation of the black pigment, including three polyketide synthases (pks3, pks4, and pks5), a cytochrome P450 monooxygenase (cyp4), and a protein with similarity to versicolorin B synthase (vbs1). Metabolic profiles of deletion mutants in this gene cluster suggested that Pks3 and Pks4 act in concert as heterodimers to generate orsellinic acid (OA), which is reduced to the corresponding aldehyde by Pks5. The OA-aldehyde can then react with triacetic acid lactone (TAL), also derived from Pks3/Pks4 heterodimers to form larger molecules, including novel coumarin derivatives. Our findings suggest that U. maydis synthesizes a novel type of melanin based on coumarin and pyran-2-one intermediates, while most fungal melanins are derived from 1,8-dihydroxynaphthalene (DHN) or l-3,4-dihydroxyphenylalanine (l-DOPA). Along with these observations, this work also provides insight into the mechanisms of polyketide synthases in this filamentous fungus.IMPORTANCE The fungus Ustilago maydis represents one of the major threats to maize plants since it is responsible for corn smut disease, which generates considerable economical losses around the world. Therefore, contributing to a better understanding of the biochemistry of defense mechanisms used by U. maydis to protect itself against harsh environments, such as the synthesis of melanin, could provide improved biological tools for tackling the problem and protect the crops. In addition, the fact that this fungus synthesizes melanin in an unconventional way, requiring more than one polyketide synthase for producing melanin precursors, gives a different perspective on the complexity of these multidomain enzymes and their evolution in the fungal kingdom.


Assuntos
Basidiomycota/metabolismo , Melaninas/biossíntese , Basidiomycota/genética , Melaninas/genética , Família Multigênica
4.
Biomolecules ; 10(11)2020 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-33142735

RESUMO

Fruiting body-forming members of the Basidiomycota maintain their ecological fitness against various antagonists like ascomycetous mycoparasites. To achieve that, they produce myriads of bioactive compounds, some of which are now being used as agrochemicals or pharmaceutical lead structures. Here, we screened ethyl acetate crude extracts from cultures of thirty-five mushroom species for antifungal bioactivity, for their effect on the ascomycete Saccharomyces cerevisiae and the basidiomycete Ustilago maydis. One extract that inhibited the growth of S. cerevisiae much stronger than that of U. maydis was further analyzed. For bioactive compound identification, we performed bioactivity-guided HPLC/MS fractionation. Fractions showing inhibition against S. cerevisiae but reduced activity against U. maydis were further analyzed. NMR-based structure elucidation from one such fraction revealed the polyyne we named feldin, which displays prominent antifungal bioactivity. Future studies with additional mushroom-derived eukaryotic toxic compounds or antifungals will show whether U. maydis could be used as a suitable host to shortcut an otherwise laborious production of such mushroom compounds, as could recently be shown for heterologous sesquiterpene production in U. maydis.


Assuntos
Agaricales/química , Basidiomycota/química , Carpóforos/química , Poli-Inos/farmacologia , Antifúngicos/química , Antifúngicos/isolamento & purificação , Antifúngicos/farmacologia , Ascomicetos/patogenicidade , Basidiomycota/efeitos dos fármacos , Basidiomycota/crescimento & desenvolvimento , Poli-Inos/química , Poli-Inos/isolamento & purificação , Saccharomyces cerevisiae/efeitos dos fármacos
5.
Angew Chem Int Ed Engl ; 58(52): 18957-18963, 2019 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-31693786

RESUMO

Natural products (NPs) from microorganisms have been important sources for discovering new therapeutic and chemical entities. While their corresponding biosynthetic gene clusters (BGCs) can be easily identified by gene-sequence-similarity-based bioinformatics strategies, the actual access to these NPs for structure elucidation and bioactivity testing remains difficult. Deletion of the gene encoding the RNA chaperone, Hfq, results in strains losing the production of most NPs. By exchanging the native promoter of a desired BGC against an inducible promoter in Δhfq mutants, almost exclusive production of the corresponding NP from the targeted BGC in Photorhabdus, Xenorhabdus and Pseudomonas was observed including the production of several new NPs derived from previously uncharacterized non-ribosomal peptide synthetases (NRPS). This easyPACId approach (easy Promoter Activated Compound Identification) facilitates NP identification due to low interference from other NPs. Moreover, it allows direct bioactivity testing of supernatants containing secreted NPs, without laborious purification.


Assuntos
Produtos Biológicos/química , Vias Biossintéticas/genética , Metabolômica/métodos , Humanos
6.
Nat Chem ; 11(7): 653-661, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31182822

RESUMO

Non-ribosomal peptide synthetases (NRPSs) are giant enzyme machines that activate amino acids in an assembly line fashion. As NRPSs are not restricted to the incorporation of the 20 proteinogenic amino acids, their efficient manipulation would enable microbial production of a diverse range of peptides; however, the structural requirements for reprogramming NRPSs to facilitate the production of new peptides are not clear. Here we describe a new fusion point inside the condensation domains of NRPSs that results in the development of the exchange unit condensation domain (XUC) concept, which enables the efficient production of peptides, even containing non-natural amino acids, in yields up to 280 mg l-1. This allows the generation of more specific NRPSs, reducing the number of unwanted peptide derivatives, but also the generation of peptide libraries. The XUC might therefore be suitable for the future optimization of peptide production and the identification of bioactive peptide derivatives for pharmaceutical and other applications.


Assuntos
Peptídeo Sintases/biossíntese , Engenharia de Proteínas/métodos , Aminoácidos/química , Bacillus/genética , Sequência de Bases , Escherichia coli/genética , Família Multigênica , Biblioteca de Peptídeos , Peptídeo Sintases/química , Peptídeo Sintases/genética , Photorhabdus/enzimologia , Domínios Proteicos/genética , Especificidade por Substrato , Xenorhabdus/genética
7.
Org Lett ; 20(6): 1563-1567, 2018 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-29474084

RESUMO

Georatusin (1), featuring a highly reduced, methylated polyketide moiety fused to a tryptophan by an amide and ester bond forming a 13-membered ring, was produced by the soil fungus Geomyces auratus. An HMQC-COSY spectrum was measured to build up the connectivities despite the overlapping proton signals. DQF-COSY, HETLOC, J-HMBC, and ROESY were implemented to determine the relative configuration of the flexible moiety. Georatusin (1) shows specific antiparasitic activities against Leishmania donovani and Plasmodium falciparum without obvious cytotoxicity. The biosynthesis of 1 was also proposed.


Assuntos
Ascomicetos , Antiparasitários , Estrutura Molecular , Peptídeos , Policetídeos
8.
Environ Microbiol ; 20(3): 1253-1270, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29441701

RESUMO

Fungi are prolific producers of natural products routinely screened for biotechnological applications, and those living endophytically within plants attract particular attention because of their purported chemical diversity. However, the harnessing of their biosynthetic potential is hampered by a large and often cryptic phylogenetic and ecological diversity, coupled with a lack of large-scale natural products' dereplication studies. To guide efforts to discover new chemistries among root-endophytic fungi, we analyzed the natural products produced by 822 strains using an untargeted UPLC-ESI-MS/MS-based approach and linked the patterns of chemical features to fungal lineages. We detected 17 809 compounds of which 7951 were classified in 1992 molecular families, whereas the remaining were considered unique chemistries. Our approach allowed to annotate 1191 compounds with different degrees of accuracy, many of which had known fungal origins. Approximately 61% of the compounds were specific of a fungal order, and differences were observed across lineages in the diversity and characteristics of their chemistries. Chemical profiles also showed variable chemosystematic values across lineages, ranging from relative homogeneity to high heterogeneity among related fungi. Our results provide an extensive resource to dereplicate fungal natural products and may assist future discovery programs by providing a guide for the selection of target fungi.


Assuntos
Produtos Biológicos/metabolismo , Reatores Biológicos/microbiologia , Fungos/classificação , Fungos/metabolismo , Fungos/genética , Genes Fúngicos/genética , Metabolômica , Filogenia , Plantas/microbiologia , Espectrometria de Massas em Tandem
9.
FEMS Yeast Res ; 17(8)2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-29186481

RESUMO

Trans-cinnamic acid (tCA) and hydrocinnamyl alcohol (HcinOH) are valuable aromatic compounds with applications in the flavour, fragrance and cosmetic industry. They can be produced with recombinant yeasts from sugars via phenylalanine after expression of a phenylalanine ammonia lyase (PAL) and an aryl carboxylic acid reductase. Here, we show that in Saccharomyces cerevisiae a PAL enzyme from the bacterium Photorhabdus luminescens was superior to a previously used plant PAL enzyme for the production of tCA. Moreover, after expression of a UDP-glucose:cinnamate glucosyltransferase (FaGT2) from Fragaria x ananassa, tCA could be converted to cinnamoyl-D-glucose which is expected to be less toxic to the yeast cells. Production of tCA and HcinOH from glucose could be increased by eliminating feedback-regulated steps of aromatic amino acid biosynthesis and diminishing the decarboxylation step of the competing Ehrlich pathway. Finally, an unknown by-product resulting from further metabolisation of a carboligation product of cinnamaldehyde (cinALD) with activated acetaldehyde, mediated by pyruvate decarboxylases, could be identified as cinnamyl methyl ketone providing a new route for the biosynthesis of precursors, such as (2S,3R) 5-phenylpent-4-ene-2,3-diol, necessary for the chemical synthesis of specific biologically active drugs such as daunomycin.


Assuntos
Álcoois/metabolismo , Cinamatos/metabolismo , Cetonas/metabolismo , Saccharomyces cerevisiae/metabolismo , Álcoois/química , Cromatografia Líquida de Alta Pressão , Cinamatos/química , Fermentação , Genes de Plantas , Glucose/biossíntese , Espectrometria de Massas , Redes e Vias Metabólicas , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
10.
Nat Microbiol ; 2(12): 1676-1685, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28993611

RESUMO

Xenorhabdus and Photorhabdus species dedicate a large amount of resources to the production of specialized metabolites derived from non-ribosomal peptide synthetase (NRPS) or polyketide synthase (PKS). Both bacteria undergo symbiosis with nematodes, which is followed by an insect pathogenic phase. So far, the molecular basis of this tripartite relationship and the exact roles that individual metabolites and metabolic pathways play have not been well understood. To close this gap, we have significantly expanded the database for comparative genomics studies in these bacteria. Clustering the genes encoded in the individual genomes into hierarchical orthologous groups reveals a high-resolution picture of functional evolution in this clade. It identifies groups of genes-many of which are involved in secondary metabolite production-that may account for the niche specificity of these bacteria. Photorhabdus and Xenorhabdus appear very similar at the DNA sequence level, which indicates their close evolutionary relationship. Yet, high-resolution mass spectrometry analyses reveal a huge chemical diversity in the two taxa. Molecular network reconstruction identified a large number of previously unidentified metabolite classes, including the xefoampeptides and tilivalline. Here, we apply genomic and metabolomic methods in a complementary manner to identify and elucidate additional classes of natural products. We also highlight the ability to rapidly and simultaneously identify potentially interesting bioactive products from NRPSs and PKSs, thereby augmenting the contribution of molecular biology techniques to the acceleration of natural product discovery.


Assuntos
Produtos Biológicos , Nematoides/microbiologia , Photorhabdus/metabolismo , Simbiose , Xenorhabdus/metabolismo , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sequência de Bases , DNA Bacteriano/isolamento & purificação , Genoma Bacteriano/genética , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/fisiologia , Redes e Vias Metabólicas , Metaboloma , Nematoides/fisiologia , Peptídeo Sintases/metabolismo , Photorhabdus/classificação , Photorhabdus/genética , Policetídeo Sintases/metabolismo , Metabolismo Secundário , Xenorhabdus/classificação , Xenorhabdus/genética
11.
Org Lett ; 19(4): 806-809, 2017 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-28134534

RESUMO

Nematophin, a known antibiotic natural product against Staphylococcus aureus for almost 20 years, is produced by all strains of Xenorhabdus nematophila. Despite its simple structure, its biosynthesis was unknown. Its biosynthetic pathway is reported using heterologous production in Escherichia coli. Additionally, the identification, structure elucidation, and biosynthesis of six extended nematophin derivatives from Xenorhabdus PB62.4 carrying an additional valine are reported. Preliminary bioactivity studies suggest a biological role of these compounds in the bacteria-nematode-insect symbiosis.


Assuntos
Antibacterianos/biossíntese , Animais , Antibacterianos/química , Antibacterianos/farmacologia , Antiparasitários/química , Antiparasitários/metabolismo , Antiparasitários/farmacologia , Escherichia coli/metabolismo , Indóis/química , Indóis/metabolismo , Indóis/farmacologia , Leishmania/efeitos dos fármacos , Mioblastos/efeitos dos fármacos , Mioblastos/parasitologia , Nematoides/efeitos dos fármacos , Plasmodium falciparum/efeitos dos fármacos , Ratos , Staphylococcus aureus/efeitos dos fármacos , Relação Estrutura-Atividade , Trypanosoma/efeitos dos fármacos , Xenorhabdus/metabolismo
12.
Angew Chem Int Ed Engl ; 54(43): 12702-5, 2015 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-26465655

RESUMO

Pyrrolizidine alkaloids (PAs) are widespread plant natural products with potent toxicity and bioactivity. Herein, the identification of bacterial PAs from entomopathogenic bacteria using differential analysis by 2D NMR spectroscopy (DANS) and mass spectrometry is described. Their biosynthesis was elucidated to involve a non-ribosomal peptide synthetase. The occurrence of these biosynthesis gene clusters in Gram-negative and Gram-positive bacteria indicates an important biological function in bacteria.


Assuntos
Bactérias/metabolismo , Alcaloides de Pirrolizidina/química , Alcaloides de Pirrolizidina/metabolismo , Bactérias/química , Bactérias/enzimologia , Proteínas de Bactérias/metabolismo , Vias Biossintéticas , Espectroscopia de Ressonância Magnética , Oxirredução , Peptídeo Sintases/metabolismo , Xenorhabdus/química , Xenorhabdus/enzimologia , Xenorhabdus/metabolismo
13.
Chembiochem ; 14(5): 633-8, 2013 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-23456955

RESUMO

Novel chatechol/hydroxamate siderophores (named "fimsbactins") were identified in Acinetobacter baumannii ATCC 17978 and Acinetobacter baylyi ADP1. The major compound, fimsbactin A, was isolated from low-iron cultures of A. baylyi ADP1, and its chemical structure was elucidated by mass spectrometry, and detailed (1)H, (13)C and (15)N NMR spectroscopy. From inverse feeding experiments following HPLC-MS analysis, the structures of five additional derivatives were elucidated. The gene cluster encoding the fimsbactin synthetase (fbs) was identified in both genomes, and mutants in fbs genes in A. baylyi were analyzed, thus allowing prediction of the fimsbactin biosynthesis pathway.


Assuntos
Acinetobacter baumannii/metabolismo , Acinetobacter/metabolismo , Catecóis/química , Ácidos Hidroxâmicos/química , Sideróforos/biossíntese , Acinetobacter/genética , Acinetobacter baumannii/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Conformação Molecular , Família Multigênica , Sideróforos/química
14.
Chemistry ; 18(8): 2342-8, 2012 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-22266804

RESUMO

Structure elucidation of natural products including the absolute configuration is a complex task that involves different analytical methods like mass spectrometry, NMR spectroscopy, and chemical derivation, which are usually performed after the isolation of the compound of interest. Here, a combination of stable isotope labeling of Photorhabdus and Xenorhabdus strains and their transaminase mutants followed by detailed MS analysis enabled the structure elucidation of novel cyclopeptides named GameXPeptides including their absolute configuration in crude extracts without their actual isolation.


Assuntos
Produtos Biológicos/química , Marcação por Isótopo/métodos , Espectrometria de Massas/métodos , Peptídeos Cíclicos/química , Peptídeos/química , Espectroscopia de Ressonância Magnética , Estereoisomerismo
15.
Nat Chem Biol ; 7(12): 888-90, 2011 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-21926994

RESUMO

We have identified a new mechanism for the cleavage and activation of nonribosomally made peptides and peptide-polyketide hybrids that are apparently operational in several different bacteria. This process includes the cleavage of a precursor molecule by a membrane-bound and D-asparagine-specific peptidase, as shown here in the biosynthesis of the antibiotic xenocoumacin from Xenorhabdus nematophila.


Assuntos
Antibacterianos/biossíntese , Biossíntese Peptídica , Pró-Fármacos/metabolismo , Xenorhabdus/química , Antibacterianos/química , Benzopiranos/química , Benzopiranos/metabolismo , Conformação Molecular , Pró-Fármacos/química , Estereoisomerismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...