Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Commun (Camb) ; 59(81): 12104-12107, 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37728431

RESUMO

The selective activation of C-C bonds holds vast promise for catalysis. So far, research has been primarily directed at rhodium and nickel under harsh reaction conditions. Herein, we report C-C insertion reactions of a 12-electron palladium(0) surrogate stabilized by a cyclic(alkyl)(amino) carbene (CAAC) ligand. Benzonitrile (1), biphenylene (2), benzocyclobutenone (3), and naphtho[b]cyclopropene (4) were studied. These substrates allow elucidation of the effect of ring strain as well as hybridization encompassing sp3, sp2 and sp hybridized carbon atoms. All reactions proceed quantitatively at or below room temperature. This work therefore outlines perspectives for mild C-C bond functionalization catalysis.

2.
J Am Chem Soc ; 144(20): 8897-8901, 2022 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-35575699

RESUMO

Whereas triplet-nitrene complexes of the late transition metals are isolable and key intermediates in catalysis, singlet-nitrene ligands remain elusive. Herein we communicate three such palladium terminal imido complexes with singlet ground states. UV-vis-NIR electronic spectroscopy with broad bands up to 1400 nm as well as high-level computations (DFT, STEOM-CCSD, CASSCF/NEVPT2, EOS analysis) and reactivity studies suggest significant palladium(0) singlet-nitrene character. Although the aliphatic nitrene complexes proved to be too reactive for isolation in analytically pure form as a result of elimination of isobutylene, the aryl congener could be characterized by SC-XRD, elemental analysis, IR-, NMR spectroscopy, and HRMS. The complexes' distinguished ambiphilicity allows them to activate hexafluorobenzene, triphenylphosphine, and pinacol borane, catalytically dehydrogenate cyclohexene, and aminate ethylene via nitrene transfer at or below room temperature.


Assuntos
Iminas , Paládio , Catálise , Iminas/química , Ligantes
4.
Chem Sci ; 12(21): 7401-7410, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-34163830

RESUMO

We report on the convenient synthesis of a CNC pincer ligand composed of carbazole and two mesoionic carbenes, as well as the corresponding lithium- and magnesium complexes. Mono-deprotonation affords a rare "naked" amide anion. In contrast to the proligand and its mono-deprotonated form, tri-deprotonated s-block complexes show bright luminescence, and their photophysical properties were therefore investigated by absorption- and luminescence spectroscopy. They reveal a quantum yield of 16% in solution at ambient temperature. Detailed quantum-chemical calculations assist in rationalizing the emissive properties based on an Intra-Ligand-Charge-Transfer (ILCT) between the carbazolido- and mesoionic carbene ligands. (Earth-)alkali metals prevent the distortion of the ligand following excitation and, thus, by avoiding non-radiative deactivation support bright luminescence.

5.
Angew Chem Int Ed Engl ; 59(47): 21088-21095, 2020 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-32745317

RESUMO

The homolytic cleavage of O-H and N-H or weak C-H bonds is a key elementary step in redox catalysis, but is thought to be unfeasible for palladium. In stark contrast, reported here is the room temperature and reversible oxidative addition of water, isopropanol, hexafluoroisopropanol, phenol, and aniline to a palladium(0) complex with a cyclic (alkyl)(amino)carbene (CAAC) and a labile pyridino ligand, as is also the case in popular N-heterocyclic carbene (NHC) palladium(II) precatalysts. The oxidative addition of protic solvents or adventitious water switches the chemoselectivity in catalysis with alkynes through activation of the terminal C-H bond. Most salient, the homolytic activation of alcohols and amines allows atom-efficient, additive-free cross-coupling and transfer hydrogenation under mild reaction conditions with usually unreactive, yet desirable reagents, including esters and bis(pinacolato)diboron.

6.
Chem Sci ; 11(16): 4138-4149, 2020 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-34760147

RESUMO

We elucidate why some electron rich-olefins such as tetrathiafulvalene (TTF) or paraquat (1,1'-dimethyl-4,4'-bipyridinylidene) form persistent radical cations, whereas others such as the dimer of N,N'-dimethyl benzimidazolin-2-ylidene (benzNHC) do not. Specifically, three heterodimers derived from cyclic (alkyl) (amino) carbenes (CAAC) with N,N'-dimethyl imidazolin-2-ylidene (NHC), N,N'-dimethyl imidazolidin-2-ylidene (saNHC) and N-methyl benzothiazolin-2-ylidene (btNHC) are reported. Whereas the olefin radical cations with the NHC and btNHC are isolable, the NHC compound with a saturated backbone (saNHC) disproportionates instead to the biscation and olefin. Furthermore, the electrochemical properties of the electron-rich olefins derived from the dimerization of the saNHC and btNHC were assessed. Based on the experiments, we propose a general computational method to model the electrochemical potentials and disproportionation equilibrium. This method, which achieves an accuracy of 0.07 V (0.06 V with calibration) in reference to the experimental values, allows for the first time to rationalize and predict the (in)stability of olefin radical cations towards disproportionation. The combined results reveal that the stability of heterodimeric olefin radical cations towards disproportionation is mostly due to aromaticity. In contrast, homodimeric radical cations are in principle isolable, if lacking steric bulk in the 2,2' positions of the heterocyclic monomers. Rigid tethers increase accordingly the stability of homodimeric radical cations, whereas the electronic effects of substituents seem much less important for the disproportionation equilibrium.

7.
J Vis Exp ; (146)2019 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-31058905

RESUMO

Protocols for the isolation of the commonly employed cyclic (alkyl)(amino) carbene (CAAC) and N-heterocyclic carbene (NHC) are reported. Furthermore, the synthesis of their mixed CAAC-NHC "Wanzlick" dimer and the synthesis of the related stable organic "olefin" radical are presented. The main goal of this manuscript is to give a detailed and general protocol for the synthetic chemist of any skill level on how to prepare free heterocyclic carbenes by deprotonation using filter cannulas. Due to the air-sensitivity of the synthesized compounds, all experiments are performed under inert atmosphere using either Schlenk technique or a dinitrogen filled glovebox. Controlling Wanzlick's equilibrium (i.e., the dimerization of free carbenes), is a crucial requirement for the application of free carbenes in coordination chemistry or organic synthesis. Thus, we elaborate on the specific electronic and steric requirements favoring the formation of dimers, heterodimers, or monomers. We will show how proton catalysis allows for the formation of dimers, and how the electronic structure of carbenes and their dimers affects the reactivity with either moisture or air. The structural identity of the reported compounds is discussed based on their NMR spectra.


Assuntos
Metano/análogos & derivados , Catálise , Espectroscopia de Ressonância Magnética , Metano/química , Metano/isolamento & purificação
8.
Angew Chem Int Ed Engl ; 57(49): 16228-16232, 2018 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-30312511

RESUMO

Herein, we report the isolation and a reactivity study of the first example of an elusive palladium(II) terminal imido complex. This scaffold is an alleged key intermediate for various catalytic processes, including the amination of C-H bonds. We demonstrate facile nitrene transfer with H-H, C-H, N-H, and O-H bonds and elucidate its role in catalysis. The high reactivity is due to the population of the antibonding highest occupied molecular orbital (HOMO), which results in unique charge separation within the closed-shell imido functionality. Hence, N atom transfer is not necessarily associated with the high valency of the metal (PdIII , PdIV ) or the open-shell character of a nitrene as commonly inferred.

9.
Chem Sci ; 9(28): 6107-6117, 2018 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-30090299

RESUMO

Organic singlet diradicaloids promise application in non-linear optics, electronic devices and singlet fission. The stabilization of carbon allotropes/cumulenes (C1, C2, C4) by carbenes has been equally an area of high activity. Combining these fields, we showed recently that carbene scaffolds allow as well for the design of diradicaloids. Herein, we report a comprehensive computational investigation (CASSCF/NEVPT2; fractional occupation DFT) on the electronic properties of carbene-bridge-carbene type diradicaloids. We delineate how to adjust the properties of these ensembles through the choice of carbene and bridge and show that already a short C2 bridge results in remarkable diradicaloid character. The choice of the carbene separately tunes the energies of the S1 and T1 excited states, whereas the bridge adjusts the overall energy level of the excited states. Accordingly, we develop guidelines on how to tailor the electronic properties of these molecules. Of particular note, fractional occupation DFT is an excellent tool to predict singlet-triplet gaps.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...