Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Micromachines (Basel) ; 14(3)2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36985107

RESUMO

Photolithographic patterning of components and integrated circuits based on active polymers for microfluidics is challenging and not always efficient on a laboratory scale using the traditional mask-based fabrication procedures. Here, we present an alternative manufacturing process based on multi-material 3D printing that can be used to print various active polymers in microfluidic structures that act as microvalves on large-area substrates efficiently in terms of processing time and consumption of active materials with a single machine. Based on the examples of two chemofluidic valve types, hydrogel-based closing valves and PEG-based opening valves, the respective printing procedures, essential influencing variables and special features are discussed, and the components are characterized with regard to their properties and tolerances. The functionality of the concept is demonstrated by a specific chemofluidic chip which automates an analysis procedure typical of clinical chemistry and laboratory medicine. Multi-material 3D printing allows active-material devices to be produced on chip substrates with tolerances comparable to photolithography but is faster and very flexible for small quantities of up to about 50 chips.

2.
Adv Mater ; 35(8): e2207741, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36349824

RESUMO

Switchable metal-organic frameworks (MOFs) change their structure in time and selectively open their pores adsorbing guest molecules, leading to highly selective separation, pressure amplification, sensing, and actuation applications. The 3D engineering of MOFs has reached a high level of maturity, but spatiotemporal evolution opens a new perspective toward engineering materials in the 4th dimension (time) by t-axis design, in essence exploiting the deliberate tuning of activation barriers. This work demonstrates the first example in which an explicit temporal engineering of a switchable MOF (DUT-8, [M1 M2 (2,6-ndc)2 dabco]n , 2,6-ndc = 2,6-naphthalene dicarboxylate, dabco = 1,4diazabicyclo[2.2.2]octane, M1  = Ni, M2  = Co) is presented. The temporal response is deliberately tuned by variations in cobalt content. A spectrum of advanced analytical methods is presented for analyzing the switching kinetics stimulated by vapor adsorption using in situ time-resolved techniques ranging from ensemble adsorption and advanced synchrotron X-ray diffraction experiments to individual crystal analysis. A novel analysis technique based on microscopic observation of individual crystals in a microfluidic channel reveals the lowest limit for adsorption switching reported so far. Differences in the spatiotemporal response of crystal ensembles originate from an induction time that varies statistically and widens characteristically with increasing cobalt content reflecting increasing activation barriers.

3.
Biosensors (Basel) ; 11(5)2021 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-34069506

RESUMO

Polydimethylsiloxane (PDMS) has been used in microfluidic systems for years, as it can be easily structured and its flexibility makes it easy to integrate actuators including pneumatic pumps. In addition, the good optical properties of the material are well suited for analytical systems. In addition to its positive aspects, PDMS is well known to adsorb small molecules, which limits its usability when it comes to drug testing, e.g., in organ-on-a-chip (OoC) systems. Therefore, alternatives to PDMS are in high demand. In this study, we use thermoplastic elastomer (TPE) films thermally bonded to laser-cut poly(methyl methacrylate) (PMMA) sheets to build up multilayered microfluidic devices with integrated pneumatic micro-pumps. We present a low-cost manufacturing technology based on a conventional CO2 laser cutter for structuring, a spin-coating process for TPE film fabrication, and a thermal bonding process using a pneumatic hot-press. UV treatment with an Excimer lamp prior to bonding drastically improves the bonding process. Optimized bonding parameters were characterized by measuring the burst load upon applying pressure and via profilometer-based measurement of channel deformation. Next, flow and long-term stability of the chip layout were measured using microparticle Image Velocimetry (uPIV). Finally, human endothelial cells were seeded in the microchannels to check biocompatibility and flow-directed cell alignment. The presented device is compatible with a real-time live-cell analysis system.


Assuntos
Dimetilpolisiloxanos/química , Dispositivos Lab-On-A-Chip , Elastômeros , Células Endoteliais , Humanos
4.
Micromachines (Basel) ; 11(5)2020 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-32370256

RESUMO

The interest in large-scale integrated (LSI) microfluidic systems that perform high-throughput biological and chemical laboratory investigations on a single chip is steadily growing. Such highly integrated Labs-on-a-Chip (LoC) provide fast analysis, high functionality, outstanding reproducibility at low cost per sample, and small demand of reagents. One LoC platform technology capable of LSI relies on specific intrinsically active polymers, the so-called stimuli-responsive hydrogels. Analogous to microelectronics, the active components of the chips can be realized by photolithographic micro-patterning of functional layers. The miniaturization potential and the integration degree of the microfluidic circuits depend on the capability of the photolithographic process to pattern hydrogel layers with high resolution, and they typically require expensive cleanroom equipment. Here, we propose, compare, and discuss a cost-efficient do-it-yourself (DIY) photolithographic set-up suitable to micro-pattern hydrogel-layers with a resolution as needed for very large-scale integrated (VLSI) microfluidics. The achievable structure dimensions are in the lower micrometer scale, down to a feature size of 20 µm with aspect ratios of 1:5 and maximum integration densities of 20,000 hydrogel patterns per cm². Furthermore, we demonstrate the effects of miniaturization on the efficiency of a hydrogel-based microreactor system by increasing the surface area to volume (SA:V) ratio of integrated bioactive hydrogels. We then determine and discuss a correlation between ultraviolet (UV) exposure time, cross-linking density of polymers, and the degree of immobilization of bioactive components.

5.
Acta Biomater ; 102: 273-286, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31778832

RESUMO

The lack of a fully developed human cardiac model in vitro hampers the progress of many biomedical research fields including pharmacology, developmental biology, and disease modeling. Currently, available methods may only differentiate human induced pluripotent stem cells (iPSCs) into immature cardiomyocytes. To achieve cardiomyocyte maturation, appropriate modulation of cellular microenvironment is needed. This study aims to optimize a microfluidic system that enhances maturation of human iPSC-derived cardiomyocytes (iPSC-CMs) through cyclic pulsatile hemodynamic forces. Human iPSC-CMs cultured in the microfluidic system show increased alignment and contractility and appear more rod-like shaped with increased cell size and increased sarcomere length when compared to static cultures. Increased complexity and density of the mitochondrial network in iPSC-CMs cultured in the microfluidic system are in line with expression of mitochondrial marker genes MT-CO1 and OPA1. Moreover, the optimized microfluidic system is capable of stably maintaining controlled oxygen levels and inducing hypoxia, revealed by increased expression of HIF1α and EGLN2 as well as changes in contraction parameters in iPSC-CMs. In summary, this microfluidic system boosts the structural maturation of iPSC-CM culture and could serve as an advanced in vitro cardiac model for biomedical research in the future. STATEMENT OF SIGNIFICANCE: The availability of in vitro human cardiomyocytes generated from induced pluripotent stem cells (iPSCs) opens the possibility to develop human in vitro heart models for disease modeling and drug testing. However, iPSC-derived cardiomyocytes remain structurally and functionally immature, which hinders their application. In this manuscript, we present an optimized and complete microfluidic system that enhances maturation of iPSC-derived cardiomyocytes through physiological cyclic pulsatile hemodynamic forces. Furthermore, we improved our microfluidic system by using a closed microfluidic recirculation and oxygen exchangers to achieve and maintain low oxygen in the culture chambers, which is suitable for mimicking the hypoxic condition and studying the pathophysiological mechanisms of human diseases in vitro. In the future, a variety of technologies including 3D tissue engineering could be integrated into our system, which may greatly extend the use of iPSC-derived cardiac models in drug development and disease modeling.


Assuntos
Diferenciação Celular/fisiologia , Células-Tronco Pluripotentes Induzidas/fisiologia , Microfluídica/métodos , Miócitos Cardíacos/fisiologia , Biomimética/instrumentação , Biomimética/métodos , Hipóxia Celular/fisiologia , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Microfluídica/instrumentação , Miócitos Cardíacos/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...