Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Animals (Basel) ; 14(6)2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38540001

RESUMO

After hatching, sea turtles leave the nest and disperse into the ocean. Many years later, they return to their natal coastlines. The period between their leaving and their returning to natal areas, known as the "Lost Years", is poorly understood. Satellite tracking studies aimed at studying the "Lost Years" are challenging due to the small size and prolonged dispersal phases of young individuals. Here, we summarize preliminary findings about the performance of prototype microsatellite tags deployed over a three-year period on 160 neonate to small juvenile sea turtles from four species released in the North Atlantic Ocean. We provide an overview of results analyzing tag performance with metrics to investigate transmission characteristics and causes of tag failure. Our results reveal that, despite certain unfavorable transmission features, overall tag performance was satisfactory. However, most track durations were shorter than those observed on individuals of similar size in other studies and did not allow for detailed analyses of trajectories and turtle behavior. Our study further suggests that tracking durations are correlated with the targeted species, highlighting a lack of robustness against some neritic behaviors. Unprecedented diving data obtained for neonate sea turtles in this study suggest that the vertical behaviors of early juveniles are already too strenuous for these miniaturized tags. Our findings will help to inform the biologging research community, showcasing recent technological advances for the species and life stages within our study.

2.
Int J Mol Sci ; 24(22)2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-38003362

RESUMO

More than 12 million people around the world suffer a stroke every year, one every 3 s. Stroke has a variety of causes and is often the result of a complex interaction of risk factors related to age, genetics, gender, lifestyle, and some cardiovascular and metabolic diseases. Despite this evidence, it is not possible to prevent the onset of stroke. The use of innovative methods for metabolite analysis has been explored in the last years to detect new stroke biomarkers. We use NMR spectroscopy to identify small molecule variations between different stages of stroke risk. The Framingham Stroke Risk Score was used in people over 63 years of age living in long-term care facilities (LTCF) to calculate the probability of suffering a stroke. Using this parameter, three study groups were formed: low stroke risk (LSR, control), moderate stroke risk (MSR) and high stroke risk (HSR). Univariate statistical analysis showed seven metabolites with increasing plasma levels across different stroke risk groups, from LSR to HSR: isoleucine, asparagine, formate, creatinine, dimethylsulfone and two unidentified molecules, which we termed "unknown-1" and "unknown-3". These metabolic markers can be used for early detection and to detect increasing stages of stroke risk more efficiently.


Assuntos
Acidente Vascular Cerebral , Humanos , Acidente Vascular Cerebral/diagnóstico , Acidente Vascular Cerebral/etiologia , Espectroscopia de Ressonância Magnética/métodos , Imageamento por Ressonância Magnética , Fatores de Risco , Biomarcadores , Metabolômica/métodos
3.
Am J Clin Nutr ; 118(5): 989-999, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37660929

RESUMO

BACKGROUND: Whether red meat consumption is associated with higher inflammation or confounded by increased adiposity remains unclear. Plasma metabolites capture the effects of diet after food is processed, digested, and absorbed, and correlate with markers of inflammation, so they can help clarify diet-health relationships. OBJECTIVE: To identify whether any metabolites associated with red meat intake are also associated with inflammation. METHODS: A cross-sectional analysis of observational data from older adults (52.84% women, mean age 63 ± 0.3 y) participating in the Multi-Ethnic Study of Atherosclerosis (MESA). Dietary intake was assessed by food-frequency questionnaire, alongside C-reactive protein (CRP), interleukin-2, interleukin-6, fibrinogen, homocysteine, and tumor necrosis factor alpha, and untargeted proton nuclear magnetic resonance (1H NMR) metabolomic features. Associations between these variables were examined using linear regression models, adjusted for demographic factors, lifestyle behaviors, and body mass index (BMI). RESULTS: In analyses that adjust for BMI, neither processed nor unprocessed forms of red meat were associated with any markers of inflammation (all P > 0.01). However, when adjusting for BMI, unprocessed red meat was inversely associated with spectral features representing the metabolite glutamine (sentinel hit: ß = -0.09 ± 0.02, P = 2.0 × 10-5), an amino acid which was also inversely associated with CRP level (ß = -0.11 ± 0.01, P = 3.3 × 10-10). CONCLUSIONS: Our analyses were unable to support a relationship between either processed or unprocessed red meat and inflammation, over and above any confounding by BMI. Glutamine, a plasma correlate of lower unprocessed red meat intake, was associated with lower CRP levels. The differences in diet-inflammation associations, compared with diet metabolite-inflammation associations, warrant further investigation to understand the extent that these arise from the following: 1) a reduction in measurement error with metabolite measures; 2) the extent that which factors other than unprocessed red meat intake contribute to glutamine levels; and 3) the ability of plasma metabolites to capture individual differences in how food intake is metabolized.


Assuntos
Glutamina , Carne Vermelha , Humanos , Feminino , Idoso , Pessoa de Meia-Idade , Masculino , Estudos Transversais , Inflamação , Dieta , Carne , Fatores de Risco
4.
J Nutr ; 153(10): 2797-2807, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37562669

RESUMO

BACKGROUND: Avocado consumption is linked to better glucose homeostasis, but small associations suggest potential population heterogeneity. Metabolomic data capture the effects of food intake after digestion and metabolism, thus accounting for individual differences in these processes. OBJECTIVES: To identify metabolomic biomarkers of avocado intake and to examine their associations with glycemia. METHODS: Baseline data from 6224 multi-ethnic older adults (62% female) included self-reported avocado intake, fasting glucose and insulin, and untargeted plasma proton nuclear magnetic resonance metabolomic features (metabolomic data were available for a randomly selected subset; N = 3438). Subsequently, incident type 2 diabetes (T2D) was assessed over an ∼18 y follow-up period. A metabolome-wide association study of avocado consumption status (consumer compared with nonconsumer) was conducted, and the relationship of these features with glycemia via cross-sectional associations with fasting insulin and glucose and longitudinal associations with incident T2D was examined. RESULTS: Three highly-correlated spectral features were associated with avocado intake at metabolome-wide significance levels (P < 5.3 ∗ 10-7) and combined into a single biomarker. We did not find evidence that these features were additionally associated with overall dietary quality, nor with any of 47 other food groups (all P > 0.001), supporting their suitability as a biomarker of avocado intake. Avocado intake showed a modest association only with lower fasting insulin (ß = -0.07 +/- 0.03, P = 0.03), an association that was attenuated to nonsignificance when additionally controlling for body mass index (kg/m2). However, our biomarker of avocado intake was strongly associated with lower fasting glucose (ß = -0.22 +/- 0.02, P < 2.0 ∗ 10-16), lower fasting insulin (ß = -0.17 +/- 0.02, P < 2.0 ∗ 10-16), and a lower incidence of T2D (hazard ratio: 0.68; 0.63-074, P < 2.0 ∗ 10-16), even when adjusting for BMI. CONCLUSIONS: Highly significant associations between glycemia and avocado-related metabolomic features, which serve as biomarkers of the physiological impact of dietary intake after digestion and absorption, compared to modest relationships between glycemia and avocado consumption, highlights the importance of considering individual differences in metabolism when considering diet-health relationships.


Assuntos
Aterosclerose , Diabetes Mellitus Tipo 2 , Persea , Humanos , Feminino , Idoso , Masculino , Diabetes Mellitus Tipo 2/epidemiologia , Fatores de Risco , Estudos Transversais , Biomarcadores , Insulina , Glucose
5.
J Nutr ; 153(8): 2174-2180, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37271414

RESUMO

BACKGROUND: Poor diet quality is a risk factor for type 2 diabetes and cardiovascular disease. However, knowledge of metabolites marking adherence to Dietary Guidelines for Americans (2015 version) are limited. OBJECTIVES: The goal was to determine a pattern of metabolites associated with the Healthy Eating Index (HEI)-2015, which measures adherence to the Dietary Guidelines for Americans. METHODS: The analysis examined 3557 adult men and women from the longitudinal cohort Multiethnic Study of Atherosclerosis (MESA), without known cardiovascular disease and with complete dietary data. Fasting serum specimens and diet and demographic questionnaires were assessed at baseline. Untargeted 1H 1-dimensional nuclei magnetic resonance spectroscopy (600 MHz) was used to generate metabolomics and lipidomics. A metabolome-wide association study specified each spectral feature as outcomes, HEI-2015 score as predictor, adjusting for age, sex, race, and study site in linear regression analyses. Subsequently, hierarchical clustering defined the discrete groups of correlated nuclei magnetic resonance features associated with named metabolites, and the linear regression analysis assessed for associations with HEI-2015 total and component scores. RESULTS: The sample included 50% women with an mean age of 63 years, with 40% identifying as White, 23% as Black, 24% as Hispanic, and 13% as Chinese American. The mean HEI-2015 score was 66. The metabolome-wide association study identified 179 spectral features significantly associated with HEI-2015 score. The cluster analysis identified 7 clusters representing 4 metabolites; HEI-2015 score was significantly associated with all. HEI-2015 score was associated with proline betaine [ß = 0.12 (SE = 0.02); P = 4.70 × 10-13] and was inversely related to proline [ß = -0.13 (SE = 0.02); P = 4.45 × 10-14], 1,5 anhydrosorbitol [ß = -0.08 (SE = 0.02); P = 4.37 × 10-7] and unsaturated fatty acyl chains [ß = 0.08 (SE = 0.02); P = 8.98 × 10-7]. Intake of total fruit, whole grains, and seafood and plant proteins was associated with proline betaine. CONCLUSIONS: Diet quality is significantly associated with unsaturated fatty acyl chains, proline betaine, and proline. Further analysis may clarify the link between diet quality, metabolites, and pathogenesis of cardiometabolic disease.


Assuntos
Doenças Cardiovasculares , Diabetes Mellitus Tipo 2 , Masculino , Adulto , Humanos , Feminino , Pessoa de Meia-Idade , Dieta Saudável , Dieta , Metabolômica
6.
J Pharm Biomed Anal ; 226: 115254, 2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36701879

RESUMO

The evaluation of joint disease using synovial fluid is an emerging field of metabolic profiling. The analysis is challenged by multiple macromolecules which can obscure the small molecule chemistry. The use of protein precipitation and extraction has been evaluated previously, but not in synovial fluid. We systematically review the published NMR spectroscopy methods of synovial fluid analysis and investigated the efficacy of three different protein precipitation techniques: methanol, acetonitrile and trichloroacetic acid. The trichloroacetic wash removed the most protein. However, metabolite recoveries were universally very poor. Acetonitrile liquid/liquid extraction gave metabolite gains from four unknown compounds with spectral peaks at δ = 1.91 ppm, 3.64 ppm, 3.95 ppm & 4.05 ppm. The metabolite recoveries for acetonitrile were between 1.5 and 7 times higher than the methanol method, across all classes of metabolite. The methanol method was more effective in removing protein as reported by the free GAG undefined peak (44 % vs 125 %). However, qualitative evaluation showed that acetonitrile and methanol provided good restoration of the spectra to baseline. The methanol extraction has issues of a gelatinous substrate in the samples. All metabolite recoveries had a CV of > 15 %. A recommendation of acetonitrile liquid/liquid extraction was made for human synovial fluid (HSF) analysis. This is due to consistency, effective protein precipitation, recovery of metabolites and additional compounds not previously visible.


Assuntos
Metanol , Líquido Sinovial , Humanos , Líquido Sinovial/química , Líquido Sinovial/metabolismo , Metanol/química , Espectroscopia de Ressonância Magnética/métodos , Extração Líquido-Líquido , Acetonitrilas/metabolismo
7.
J Neurochem ; 164(1): 57-76, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36326588

RESUMO

Alzheimer's disease (AD) is a highly prevalent neurodegenerative disorder. Despite increasing evidence of the importance of metabolic dysregulation in AD, the underlying metabolic changes that may impact amyloid plaque formation are not understood, particularly for late-onset AD. This study analyzed genome-wide association studies (GWAS), transcriptomics, and proteomics data obtained from several data repositories to obtain differentially expressed (DE) multi-omics elements in mouse models of AD. We characterized the metabolic modulation in these data sets using gene ontology, transcription factor, pathway, and cell-type enrichment analyses. A predicted lipid signature was extracted from genome-scale metabolic networks (GSMN) and subsequently validated in a lipidomic data set derived from cortical tissue of ABCA-7 null mice, a mouse model of one of the genes associated with late-onset AD. Moreover, a metabolome-wide association study (MWAS) was performed to further characterize the association between dysregulated lipid metabolism in human blood serum and genes associated with AD risk. We found 203 DE transcripts, 164 DE proteins, and 58 DE GWAS-derived mouse orthologs associated with significantly enriched metabolic biological processes. Lipid and bioenergetic metabolic pathways were significantly over-represented across the AD multi-omics data sets. Microglia and astrocytes were significantly enriched in the lipid-predominant AD-metabolic transcriptome. We also extracted a predicted lipid signature that was validated and robustly modeled class separation in the ABCA7 mice cortical lipidome, with 11 of these lipid species exhibiting statistically significant modulations. MWAS revealed 298 AD single nucleotide polymorphisms-metabolite associations, of which 70% corresponded to lipid classes. These results support the importance of lipid metabolism dysregulation in AD and highlight the suitability of mapping AD multi-omics data into GSMNs to identify metabolic alterations.


Assuntos
Doença de Alzheimer , Humanos , Camundongos , Animais , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Lipidômica , Estudo de Associação Genômica Ampla , Multiômica , Camundongos Knockout , Lipídeos , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo
8.
Proc Natl Acad Sci U S A ; 119(43): e2206083119, 2022 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-36269859

RESUMO

Genome-wide association studies (GWASs) have identified genetic loci associated with the risk of Alzheimer's disease (AD), but the molecular mechanisms by which they confer risk are largely unknown. We conducted a metabolome-wide association study (MWAS) of AD-associated loci from GWASs using untargeted metabolic profiling (metabolomics) by ultraperformance liquid chromatography-mass spectrometry (UPLC-MS). We identified an association of lactosylceramides (LacCer) with AD-related single-nucleotide polymorphisms (SNPs) in ABCA7 (P = 5.0 × 10-5 to 1.3 × 10-44). We showed that plasma LacCer concentrations are associated with cognitive performance and genetically modified levels of LacCer are associated with AD risk. We then showed that concentrations of sphingomyelins, ceramides, and hexosylceramides were altered in brain tissue from Abca7 knockout mice, compared with wild type (WT) (P = 0.049-1.4 × 10-5), but not in a mouse model of amyloidosis. Furthermore, activation of microglia increases intracellular concentrations of hexosylceramides in part through induction in the expression of sphingosine kinase, an enzyme with a high control coefficient for sphingolipid and ceramide synthesis. Our work suggests that the risk for AD arising from functional variations in ABCA7 is mediated at least in part through ceramides. Modulation of their metabolism or downstream signaling may offer new therapeutic opportunities for AD.


Assuntos
Transportadores de Cassetes de Ligação de ATP , Doença de Alzheimer , Ceramidas , Animais , Camundongos , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Ceramidas/metabolismo , Cromatografia Líquida , Estudo de Associação Genômica Ampla , Lactosilceramidas , Metaboloma , Camundongos Knockout , Esfingomielinas , Espectrometria de Massas em Tandem
9.
Cancers (Basel) ; 14(18)2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36139619

RESUMO

Predicting patient response to treatment and the onset of chemoresistance are still major challenges in oncology. Chemoresistance is deeply influenced by the complex cellular interactions occurring within the tumor microenvironment (TME), including metabolic crosstalk. We have previously shown that ex vivo tumor tissue cultures derived from ovarian carcinoma (OvC) resections retain the TME components for at least four weeks of culture and implemented assays for assessment of drug response. Here, we explored ex vivo patient-derived tumor tissue cultures to uncover metabolic signatures of chemosensitivity and/or resistance. Tissue cultures derived from nine OvC cases were challenged with carboplatin and paclitaxel, the standard-of-care chemotherapeutics, and the metabolic footprints were characterized by LC-MS. Partial least-squares discriminant analysis (PLS-DA) revealed metabolic signatures that discriminated high-responder from low-responder tissue cultures to ex vivo drug exposure. As a proof-of-concept, a set of potential metabolic biomarkers of drug response was identified based on the receiver operating characteristics (ROC) curve, comprising amino acids, fatty acids, pyrimidine, glutathione, and TCA cycle pathways. Overall, this work establishes an analytical and computational platform to explore metabolic features of the TME associated with response to treatment, which can leverage the discovery of biomarkers of drug response and resistance in OvC.

10.
Anal Chem ; 94(14): 5493-5503, 2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35360896

RESUMO

Integration of multiple datasets can greatly enhance bioanalytical studies, for example, by increasing power to discover and validate biomarkers. In liquid chromatography-mass spectrometry (LC-MS) metabolomics, it is especially hard to combine untargeted datasets since the majority of metabolomic features are not annotated and thus cannot be matched by chemical identity. Typically, the information available for each feature is retention time (RT), mass-to-charge ratio (m/z), and feature intensity (FI). Pairs of features from the same metabolite in separate datasets can exhibit small but significant differences, making matching very challenging. Current methods to address this issue are too simple or rely on assumptions that cannot be met in all cases. We present a method to find feature correspondence between two similar LC-MS metabolomics experiments or batches using only the features' RT, m/z, and FI. We demonstrate the method on both real and synthetic datasets, using six orthogonal validation strategies to gauge the matching quality. In our main example, 4953 features were uniquely matched, of which 585 (96.8%) of 604 manually annotated features were correct. In a second example, 2324 features could be uniquely matched, with 79 (90.8%) out of 87 annotated features correctly matched. Most of the missed annotated matches are between features that behave very differently from modeled inter-dataset shifts of RT, MZ, and FI. In a third example with simulated data with 4755 features per dataset, 99.6% of the matches were correct. Finally, the results of matching three other dataset pairs using our method are compared with a published alternative method, metabCombiner, showing the advantages of our approach. The method can be applied using M2S (Match 2 Sets), a free, open-source MATLAB toolbox, available at https://github.com/rjdossan/M2S.


Assuntos
Metabolômica , Biomarcadores/análise , Cromatografia Líquida/métodos , Espectrometria de Massas/métodos , Metabolômica/métodos
11.
Zoo Biol ; 41(6): 560-575, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35137968

RESUMO

In this paper, we cover 4 years of live fish transports that ranged from 14 to 200 h (8 days), and bioloads from 3.8 to 76.9 kg/m3 . The key ingredients for success in all trips, where virtually no mortality occurred, was atributed to (1) pre-buffering the water with sodium bicarbonate and sodium carbonate at 50 g/m3 (each)-and/or ATM Alka-HaulTM at 25 g/m3 -and applying additional (partial or full) doses throughout each transport, whenever the tanks were accessible; (2) pre-quenching ammonia with ATM TriageTM at 32 g/m3 , and applying additional (partial or full) doses throughout each transport, whenever the tanks were accessible; (3) keeping the dissolved oxygen saturation rate above 100%, ideally above 150%; (4) Keeping temperature on the lower limit of each species' tolerance range; (5) Using foam fractionators to effectively eliminate organic matter from the water and (6) Using pure sine wave inverters, which allows for a steady supply of electrical current throughout the transport. The use of a 'preventive' versus 'corrective' pH buffering philosophy is also discussed.


Assuntos
Salmo salar , Animais , Água , Animais de Zoológico
12.
Anal Chem ; 94(8): 3446-3455, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35180347

RESUMO

Untargeted metabolomics and lipidomics LC-MS experiments produce complex datasets, usually containing tens of thousands of features from thousands of metabolites whose annotation requires additional MS/MS experiments and expert knowledge. All-ion fragmentation (AIF) LC-MS/MS acquisition provides fragmentation data at no additional experimental time cost. However, analysis of such datasets requires reconstruction of parent-fragment relationships and annotation of the resulting pseudo-MS/MS spectra. Here, we propose a novel approach for automated annotation of isotopologues, adducts, and in-source fragments from AIF LC-MS datasets by combining correlation-based parent-fragment linking with molecular fragment matching. Our workflow focuses on a subset of features rather than trying to annotate the full dataset, saving time and simplifying the process. We demonstrate the workflow in three human serum datasets containing 599 features manually annotated by experts. Precision and recall values of 82-92% and 82-85%, respectively, were obtained for features found in the highest-rank scores (1-5). These results equal or outperform those obtained using MS-DIAL software, the current state of the art for AIF data annotation. Further validation for other biological matrices and different instrument types showed variable precision (60-89%) and recall (10-88%) particularly for datasets dominated by nonlipid metabolites. The workflow is freely available as an open-source R package, MetaboAnnotatoR, together with the fragment libraries from Github (https://github.com/gggraca/MetaboAnnotatoR).


Assuntos
Metabolômica , Espectrometria de Massas em Tandem , Cromatografia Líquida/métodos , Humanos , Metabolômica/métodos , Software , Espectrometria de Massas em Tandem/métodos , Fluxo de Trabalho
13.
J Pharm Biomed Anal ; 197: 113942, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33607503

RESUMO

The impact of metabolism upon the altered pathology of joint disease is rapidly becoming recognized as an important area of study. Synovial joint fluid is an attractive and representative biofluid of joint disease. A systemic review revealed little evidence of the metabolic stability of synovial joint fluid collection, handling or storage, despite recent reports characterizing the metabolic phenotype in joint disease. We aim to report the changes in small molecule detection within human synovial fluid (HSF) using nuclear magnetic resonance (NMR) spectroscopy at varying storage temperatures, durations and conditions. HSF was harvested by arthrocentesis from patients with isolated monoarthropathy or undergoing joint replacement (n = 30). Short-term storage (0-12 h, 4°C & 18°C) and the effect of repeated freeze-thaw cycles (-80°C to 18°C) was assessed. Long-term storage was evaluated by early (-80°C, <21days) and late analysis (-80°C, 10-12 months). 1D NMR spectroscopy experiments, NOESYGPPR1D and CPMG identified metabolites and semi-quantification was performed. Samples demonstrated broad stability to freeze-thaw cycling and refrigeration of <4 h. Short-term room temperature or refrigerated storage showed significant variation in 2-ketoisovalerate, valine, dimethylamine, succinate, 2-hydroxybutyrate, and acetaminophen glucuronide. Lipid and macromolecule detection was variable. Long-term storage demonstrated significant changes in: acetate, acetoacetate, creatine, N,N-dimethylglycine, dimethylsulfone, 3-hydroxybutyrate and succinate. Changeable metabolites during short-term storage appeared to be energy-synthesis intermediates. Most metabolites were stable for the first four hours at room temperature or refrigeration, with notable exceptions. We therefore recommend that HSF samples should be kept refrigerated for no more than 4 hours prior to freezing at -80°C. Furthermore, storage of HSF samples for 10-12 months before analysis can affect the detection of selected metabolites.


Assuntos
Manejo de Espécimes , Líquido Sinovial , Congelamento , Humanos , Espectroscopia de Ressonância Magnética , Metabolômica , Temperatura
14.
Bone Joint Res ; 10(1): 85-95, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33502243

RESUMO

AIMS: The diagnosis of joint infections is an inexact science using combinations of blood inflammatory markers and microscopy, culture, and sensitivity of synovial fluid (SF). There is potential for small molecule metabolites in infected SF to act as infection markers that could improve accuracy and speed of detection. The objective of this study was to use nuclear magnetic resonance (NMR) spectroscopy to identify small molecule differences between infected and noninfected human SF. METHODS: In all, 16 SF samples (eight infected native and prosthetic joints plus eight noninfected joints requiring arthroplasty for end-stage osteoarthritis) were collected from patients. NMR spectroscopy was used to analyze the metabolites present in each sample. Principal component analysis and univariate statistical analysis were undertaken to investigate metabolic differences between the two groups. RESULTS: A total of 16 metabolites were found in significantly different concentrations between the groups. Three were in higher relative concentrations (lipids, cholesterol, and N-acetylated molecules) and 13 in lower relative concentrations in the infected group (citrate, glycine, glycosaminoglycans, creatinine, histidine, lysine, formate, glucose, proline, valine, dimethylsulfone, mannose, and glutamine). CONCLUSION: Metabolites found in significantly greater concentrations in the infected cohort are markers of inflammation and infection. They play a role in lipid metabolism and the inflammatory response. Those found in significantly reduced concentrations were involved in carbohydrate metabolism, nucleoside metabolism, the glutamate metabolic pathway, increased oxidative stress in the diseased state, and reduced articular cartilage breakdown. This is the first study to demonstrate differences in the metabolic profile of infected and noninfected human SF, using a noninfected matched cohort, and may represent putative biomarkers that form the basis of new diagnostic tests for infected SF. Cite this article: Bone Joint Res 2021;10(1):85-95.

15.
Metabolites ; 10(12)2020 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-33291639

RESUMO

BACKGROUND: Overweight and obesity amongst women of reproductive age are increasingly common in developed economies and are shown to adversely affect birth outcomes and both childhood and adulthood health risks in the offspring. Metabolic profiling in conditions of overweight and obesity in pregnancy could potentially be applied to elucidate the molecular basis of the adverse effects of gestational weight gain (GWG) and postpartum weight loss (WL) on future risks for cardiovascular disease (CVD) and other chronic diseases. METHODS: Biofluid samples were collected from 114 ethnically diverse pregnant women with body mass index (BMI) between 25 and 40 kg/m2 from Chicago (US), as part of a randomized lifestyle intervention trial (Maternal Offspring Metabolics: Family Intervention Trial; NCT01631747). At 15 weeks, 35 weeks of gestation, and at 1 year postpartum, the blood plasma lipidome and metabolic profile of urine samples were analyzed by liquid chromatography mass spectrometry (LC-MS) and 1H nuclear magnetic resonance spectroscopy (1H NMR) respectively. RESULTS: Urinary 4-deoxyerythronic acid and 4-deoxythreonic acid were found to be positively correlated to BMI. Seventeen plasma lipids were found to be associated with GWG and 16 lipids were found to be associated with WL, which included phosphatidylinositols (PI), phosphatidylcholines (PC), lysophospholipids (lyso-), sphingomyelins (SM) and ether phosphatidylcholine (PC-O). Three phospholipids found to be positively associated with GWG all contained palmitate side-chains, and amongst the 14 lipids that were negatively associated with GWG, seven were PC-O. Six of eight lipids found to be negatively associated with WL contained an 18:2 fatty acid side-chain. CONCLUSIONS: Maternal obesity was associated with characteristic urine and plasma metabolic phenotypes, and phospholipid profile was found to be associated with both GWG and postpartum WL in metabolically healthy pregnant women with overweight/obesity. Postpartum WL may be linked to the reduction in the intake of linoleic acid/conjugated linoleic acid food sources in our study population.

16.
Bone Joint Res ; 9(3): 108-119, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32435463

RESUMO

AIMS: Metabolic profiling is a top-down method of analysis looking at metabolites, which are the intermediate or end products of various cellular pathways. Our primary objective was to perform a systematic review of the published literature to identify metabolites in human synovial fluid (HSF), which have been categorized by metabolic profiling techniques. A secondary objective was to identify any metabolites that may represent potential biomarkers of orthopaedic disease processes. METHODS: A systematic review was conducted in accordance with Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines using the MEDLINE, Embase, PubMed, and Cochrane databases. Studies included were case series, case control series, and cohort studies looking specifically at HSF. RESULTS: The primary analysis, which pooled the results from 17 published studies and four meeting abstracts, identified over 200 metabolites. Seven of these studies (six published studies, one meeting abstract) had asymptomatic control groups and collectively suggested 26 putative biomarkers in osteoarthritis, inflammatory arthropathies, and trauma. These can broadly be categorized into amino acids plus related metabolites, fatty acids, ketones, and sugars. CONCLUSION: The role of metabolic profiling in orthopaedics is fast evolving with many metabolites already identified in a variety of pathologies. However, these results need to be interpreted with caution due to the presence of multiple confounding factors in many of the studies. Future research should include largescale epidemiological metabolic profiling studies incorporating various confounding factors with appropriate statistical analysis to account for multiple testing of the data.Cite this article: Bone Joint Res. 2020;9(3):108-119.

17.
Adv Exp Med Biol ; 1219: 367-385, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32130709

RESUMO

Altered metabolism is one of the key hallmarks of cancer. The development of sensitive, reproducible and robust bioanalytical tools such as Nuclear Magnetic Resonance Spectroscopy and Mass Spectrometry techniques offers numerous opportunities for cancer metabolism research, and provides additional and exciting avenues in cancer diagnosis, prognosis and for the development of more effective and personalized treatments. In this chapter, we introduce the current state of the art of metabolomics and metabolic phenotyping approaches in cancer research and clinical diagnostics.


Assuntos
Pesquisa Biomédica , Metabolômica , Neoplasias/diagnóstico , Neoplasias/metabolismo , Humanos , Espectroscopia de Ressonância Magnética , Espectrometria de Massas
18.
Bioinformatics ; 36(9): 2862-2871, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-31950989

RESUMO

MOTIVATION: Liquid chromatography-mass spectrometry (LC-MS) is a standard method for proteomics and metabolomics analysis of biological samples. Unfortunately, it suffers from various changes in the retention times (RT) of the same compound in different samples, and these must be subsequently corrected (aligned) during data processing. Classic alignment methods such as in the popular XCMS package often assume a single time-warping function for each sample. Thus, the potentially varying RT drift for compounds with different masses in a sample is neglected in these methods. Moreover, the systematic change in RT drift across run order is often not considered by alignment algorithms. Therefore, these methods cannot effectively correct all misalignments. For a large-scale experiment involving many samples, the existence of misalignment becomes inevitable and concerning. RESULTS: Here, we describe an integrated reference-free profile alignment method, neighbor-wise compound-specific Graphical Time Warping (ncGTW), that can detect misaligned features and align profiles by leveraging expected RT drift structures and compound-specific warping functions. Specifically, ncGTW uses individualized warping functions for different compounds and assigns constraint edges on warping functions of neighboring samples. Validated with both realistic synthetic data and internal quality control samples, ncGTW applied to two large-scale metabolomics LC-MS datasets identifies many misaligned features and successfully realigns them. These features would otherwise be discarded or uncorrected using existing methods. The ncGTW software tool is developed currently as a plug-in to detect and realign misaligned features present in standard XCMS output. AVAILABILITY AND IMPLEMENTATION: An R package of ncGTW is freely available at Bioconductor and https://github.com/ChiungTingWu/ncGTW. A detailed user's manual and a vignette are provided within the package. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Metabolômica , Espectrometria de Massas em Tandem , Algoritmos , Cromatografia Líquida , Proteômica , Software
19.
Metabolites ; 9(11)2019 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-31652780

RESUMO

BolA is a ubiquitous global transcription factor. Despite its clear role in the induction of important stress-resistant physiological changes and its recent implication in the virulence of Salmonella, further research is required to shed light on the pathways modulated by BolA. In this study, we resorted to untargeted 1H-NMR metabolomics to understand the impact of BolA on the metabolic profile of Salmonella Typhimurium, under virulence conditions. Three strains of S. Typhimurium SL1344 were studied: An SL1344 strain transformed with an empty plasmid (control), a bolA knockout mutant (ΔbolA), and a strain overexpressing bolA (bolA+). These strains were grown in a minimal virulence-inducing medium and cells were collected at the end of the exponential and stationary phases. The extracts were analyzed by NMR, and multivariate and univariate statistical analysis were performed to identify significant alterations. Principal component analysis (PCA) and partial least squares discriminant analysis (PLS-DA) of 1H-NMR data allowed the discrimination between the metabolic profiles of these strains, revealing increased levels of acetate, valine, alanine, NAD+, succinate, coenzyme A, glutathione, and putrescine in bolA+. These results indicate that BolA regulates pathways related to stress resistance and virulence, being an important modulator of the metabolic processes needed for S. Typhimurium infection.

20.
Methods Mol Biol ; 2037: 453-470, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31463860

RESUMO

NMR data from large studies combining multiple cohorts is becoming common in large-scale metabolomics. The data size and combination of cohorts with diverse properties leads to special problems for data processing and analysis. These include alignment, normalization, detection and removal of outliers, presence of strong correlations, and the identification of unknowns. Nonetheless, these challenges can be addressed with suitable algorithms and techniques, leading to enhanced data sets ripe for further data mining.


Assuntos
Algoritmos , Biomarcadores/análise , Espectroscopia de Ressonância Magnética/métodos , Redes e Vias Metabólicas , Metabolômica/métodos , Estudos de Coortes , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...