Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Development ; 149(14)2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35815643

RESUMO

The barrier-forming, self-renewing mammalian epidermis comprises keratinocytes, pigment-producing melanocytes and resident immune cells as first-line host defense. In murine tail skin, interfollicular epidermis patterns into pigmented 'scale' and hypopigmented 'interscale' epidermis. Why and how mature melanocytes accumulate in scale epidermis is unresolved. Here, we delineate a cellular hierarchy among epidermal cell types that determines skin patterning. Already during postnatal development, melanocytes co-segregate with newly forming scale compartments. Intriguingly, this process coincides with partitioning of both Langerhans cells and dendritic epidermal T cells to interscale epidermis, suggesting functional segregation of pigmentation and immune surveillance. Analysis of non-pigmented mice and of mice lacking melanocytes or resident immune cells revealed that immunocyte patterning is melanocyte and melanin independent and, vice versa, immune cells do not control melanocyte localization. Instead, genetically enforced progressive scale fusion upon Lrig1 deletion showed that melanocytes and immune cells dynamically follow epithelial scale:interscale patterns. Importantly, disrupting Wnt-Lef1 function in keratinocytes caused melanocyte mislocalization to interscale epidermis, implicating canonical Wnt signaling in organizing the pigmentation pattern. Together, this work uncovers cellular and molecular principles underlying the compartmentalization of tissue functions in skin.


Assuntos
Epiderme , Cauda , Animais , Células Epidérmicas/metabolismo , Epiderme/metabolismo , Queratinócitos/metabolismo , Mamíferos/metabolismo , Melaninas/metabolismo , Melanócitos/metabolismo , Glicoproteínas de Membrana/metabolismo , Camundongos , Proteínas do Tecido Nervoso/metabolismo , Pigmentação da Pele , Cauda/metabolismo
2.
Proc Natl Acad Sci U S A ; 117(42): 26328-26339, 2020 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-33020261

RESUMO

Dendritic cell (DC) maturation is a prerequisite for the induction of adaptive immune responses against pathogens and cancer. Transcription factor (TF) networks control differential aspects of early DC progenitor versus late-stage DC cell fate decisions. Here, we identified the TF C/EBPß as a key regulator for DC maturation and immunogenic functionality under homeostatic and lymphoma-transformed conditions. Upon cell-specific deletion of C/EBPß in CD11c+MHCIIhi DCs, gene expression profiles of splenic C/EBPß-/- DCs showed a down-regulation of E2F cell cycle target genes and associated proliferation signaling pathways, whereas maturation signatures were enriched. Total splenic DC cell numbers were modestly increased but differentiation into cDC1 and cDC2 subsets were unaltered. The splenic CD11c+MHCIIhiCD64+ DC compartment was also increased, suggesting that C/EBPß deficiency favors the expansion of monocytic-derived DCs. Expression of C/EBPß could be mimicked in LAP/LAP* isoform knockin DCs, whereas the short isoform LIP supported a differentiation program similar to deletion of the full-length TF. In accordance with E2F1 being a negative regulator of DC maturation, C/EBPß-/- bone marrow-derived DCs matured much faster enabling them to activate and polarize T cells stronger. In contrast to a homeostatic condition, lymphoma-exposed DCs exhibited an up-regulation of the E2F transcriptional pathways and an impaired maturation. Pharmacological blockade of C/EBPß/mTOR signaling in human DCs abrogated their protumorigenic function in primary B cell lymphoma cocultures. Thus, C/EBPß plays a unique role in DC maturation and immunostimulatory functionality and emerges as a key factor of the tumor microenvironment that promotes lymphomagenesis.


Assuntos
Proteína beta Intensificadora de Ligação a CCAAT/metabolismo , Células Dendríticas/metabolismo , Animais , Proteína beta Intensificadora de Ligação a CCAAT/fisiologia , Diferenciação Celular , Linhagem Celular , Feminino , Regulação da Expressão Gênica , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Monócitos/metabolismo , Isoformas de Proteínas/genética , Transdução de Sinais , Linfócitos T/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Fatores de Transcrição/metabolismo , Microambiente Tumoral/fisiologia
3.
Oncogene ; 37(37): 5136-5146, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29789715

RESUMO

The polarity proteins Par3 and aPKC are key regulators of processes altered in cancer. Par3/aPKC are thought to dynamically interact with Par6 but increasing evidence suggests that aPKC and Par3 also exert complex-independent functions. Whereas aPKCλ serves as tumor promotor, Par3 can either promote or suppress tumorigenesis. Here we asked whether and how Par3 and aPKCλ genetically interact to control two-stage skin carcinogenesis. Epidermal loss of Par3, aPKCλ, or both, strongly reduced tumor multiplicity and increased latency but inhibited invasion to similar extents, indicating that Par3 and aPKCλ function as a complex to promote tumorigenesis. Molecularly, Par3/aPKCλ cooperate to promote Akt, ERK and NF-κB signaling during tumor initiation to sustain growth, whereas aPKCλ dominates in promoting survival. In the inflammatory tumorigenesis phase Par3/aPKCλ cooperate to drive Stat3 activation and hyperproliferation. Unexpectedly, the reduced inflammatory signaling did not alter carcinogen-induced immune cell numbers but reduced IL-4 Receptor-positive stromal macrophage numbers in all mutant mice, suggesting that epidermal aPKCλ and Par3 promote a tumor-permissive environment. Importantly, aPKCλ also serves a distinct, carcinogen-independent role in controlling skin immune cell homeostasis. Collectively, our data demonstrates that Par3 and aPKCλ cooperate to promote skin tumor initiation and progression, likely through sustaining growth, survival, and inflammatory signaling.


Assuntos
Carcinogênese/genética , Moléculas de Adesão Celular/genética , Proteína Quinase C/genética , Neoplasias Cutâneas/genética , Pele/patologia , Proteínas Adaptadoras de Transdução de Sinal , Animais , Carcinogênese/patologia , Proteínas de Ciclo Celular , Polaridade Celular/genética , Proliferação de Células/genética , Modelos Animais de Doenças , Inflamação/patologia , Macrófagos/patologia , Camundongos , Camundongos Knockout , NF-kappa B/genética , Receptores de Interleucina-4/genética , Fator de Transcrição STAT3/genética , Transdução de Sinais/genética , Neoplasias Cutâneas/patologia
4.
Mol Carcinog ; 56(7): 1816-1824, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28224663

RESUMO

Germline mutations of MLH1 are responsible for tumor generation in nearly 50% of patients with Lynch Syndrome, and around 15% of sporadic colorectal cancers show MLH1-deficiency due to promotor hypermethylation. Although these tumors are of lower aggressiveness the benefit for these patients from standard chemotherapy is still under discussion. Recently, it was shown that the sensitivity to the DNA-PKcs inhibitor KU60648 is linked to loss of the MMR protein MSH3. However, loss of MSH3 is rather secondary, as a consequence of MMR-deficiency, and frequently detectable in MLH1-deficient tumors. Therefore, we examined the expression of MLH1, MSH2, MSH6, and MSH3 in different MMR-deficient and proficient cell lines and determined their sensitivity to KU60648 by analyzing cell viability and survival. MLH1-dependent ability of double strand break (DSB) repair was monitored after irradiation via γH2AX detection. A panel of 12 colon cancer cell lines, two pairs of cells, where MLH1 knock down was compared to controls with the same genetic background, and one MLH1-deficient cell line where MLH1 was overexpressed, were included. In summary, we found that MLH1 and/or MSH3-deficient cells exhibited a significantly higher sensitivity to KU60648 than MMR-proficient cells and that overexpression of MLH1 in MLH1-deficient cells resulted in a decrease of cell sensitivity. KU60648 efficiency seems to be associated with reduced DSB repair capacity. Since the molecular testing of colon tumors for MLH1 expression is a clinical standard we believe that MLH1 is a much better marker and a greater number of patients would benefit from KU60648 treatment.


Assuntos
Neoplasias do Colo/tratamento farmacológico , Proteína Quinase Ativada por DNA/antagonistas & inibidores , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Proteína 1 Homóloga a MutL/antagonistas & inibidores , Proteínas Nucleares/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Reparo de Erro de Pareamento de DNA/efeitos dos fármacos , Humanos , Proteína 1 Homóloga a MutL/genética , Proteína 1 Homóloga a MutL/metabolismo , RNA Interferente Pequeno/genética , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...