Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 931: 172947, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38703837

RESUMO

This study delves into the eco-endocrinological dynamics concerning the impact of dexamethasone (DXE) on the interrenal axis in juvenile carp, Cyprinus carpio. Through a comprehensive analysis, we investigated the effects of DXE exposure on oxidative stress, biochemical biomarkers, gene expression, and bioaccumulation within the interrenal axis. Results revealed a concentration-dependent escalation of cellular oxidation biomarkers, including 1) hydroperoxides content (HPC), 2) lipid peroxidation level (LPX), and 3) protein carbonyl content (PCC), indicative of heightened oxidative stress. Concurrently, the activity of critical antioxidant enzymes, superoxide dismutase (SOD), and catalase (CAT), significantly increased, underscoring the organism's response to oxidative insult. Notable alterations were observed in biochemical biomarkers, particularly Gamma-glutamyl-transpeptidase (GGT) and alkaline phosphatase (ALP) activity, with GGT displaying a significant decrease with increasing DXE concentrations. Gene expression analysis revealed a significant upregulation of stress and inflammation response genes, as well as those associated with sensitivity to superoxide ion presence and calcium signaling, in response to DXE exposure. Furthermore, DXE demonstrated a concentration-dependent presence in interrenal tissue, with consistent bioconcentration factors observed across all concentrations tested. These findings shed light on the physiological and molecular responses of juvenile carp to DXE exposure, emphasizing the potential ecological implications of DXE contamination in aquatic environments. Understanding these dynamics is crucial for assessing the environmental impact of glucocorticoid pollutants and developing effective management strategies to mitigate their adverse effects on aquatic ecosystems.


Assuntos
Carpas , Dexametasona , Estresse Oxidativo , Poluentes Químicos da Água , Animais , Carpas/metabolismo , Carpas/fisiologia , Poluentes Químicos da Água/toxicidade , Biomarcadores/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Rim/metabolismo , Rim/efeitos dos fármacos
2.
Sci Total Environ ; 894: 165016, 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37348709

RESUMO

Caffeine (CAF) is an alkaloid, which acts as a central nervous system (CNS) stimulant drug. In recent years, CAF has been recurrently detected in water bodies, generating deleterious effects in aquatic organisms. The information on the toxic effects of CAF in the environment is still limited. Thus, the objective of this work was to determine whether CAF at environmentally relevant concentrations (CAF concentrations were selected based on studies on the worldwide occurrence of this compound and on the toxicity of CAF in aquatic species) is capable of inducing alterations to embryonic development and alteration of oxidative stress-related gene expression patterns in Cyprinus carpio. For this purpose, common carp embryos (2 hpf) were exposed to realistic concentrations of CAF until 96 hpf. Alterations to embryonic development and teratogenic effects were evaluated at 12, 24, 48, 72 and 96 hpf. In addition, oxidative stress in carp embryos at 72 and 96 hpf was evaluated by cellular oxidation biomarkers (lipoperoxidation level, hydroperoxide content and carbonyl protein content) and antioxidant enzymes activities (superoxide dismutase and catalase). Oxidative stress-related gene expression (sod, cat and gpx1) was also evaluated. Our results showed that CAF concentrations above 500 ng/L are capable of producing teratogenic effects. Furthermore, CAF was able to induce alterations such cardiac malformations, somite alterations, pericardial edema and chorda malformations. Concerning oxidative stress, the results demonstrated that CAF induce oxidative damage on the embryos of C. carpio. Our outcomes also showed up-regulations in genes related to antioxidant activity sod, cat and gpx by CAF exposure. In conclusion CAF at environmentally relevant concentrations is able to alter the embryonic development of common carp by the oxidative stress pathway. Based on the above evidence, it can be inferred that acute exposure to CAF can lead to a toxic response that significantly harms fish's health, adversely affecting their essential organs' functioning.


Assuntos
Carpas , Teratogênese , Poluentes Químicos da Água , Animais , Carpas/metabolismo , Cafeína/toxicidade , Bioacumulação , Peroxidação de Lipídeos , Poluentes Químicos da Água/toxicidade , Biomarcadores/metabolismo , Estresse Oxidativo , Antioxidantes/metabolismo , Expressão Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...