Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Nanotechnol ; 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38528108

RESUMO

Quantum effects in nanoscale electronic devices promise to lead to new types of functionality not achievable using classical electronic components. However, quantum behaviour also presents an unresolved challenge facing electronics at the few-nanometre scale: resistive channels start leaking owing to quantum tunnelling. This affects the performance of nanoscale transistors, with direct source-drain tunnelling degrading switching ratios and subthreshold swings, and ultimately limiting operating frequency due to increased static power dissipation. The usual strategy to mitigate quantum effects has been to increase device complexity, but theory shows that if quantum effects can be exploited in molecular-scale electronics, this could provide a route to lower energy consumption and boost device performance. Here we demonstrate these effects experimentally, showing how the performance of molecular transistors is improved when the resistive channel contains two destructively interfering waves. We use a zinc-porphyrin coupled to graphene electrodes in a three-terminal transistor to demonstrate a >104 conductance-switching ratio, a subthreshold swing at the thermionic limit, a >7 kHz operating frequency and stability over >105 cycles. We fully map the anti-resonance interference features in conductance, reproduce the behaviour by density functional theory calculations and trace back the high performance to the coupling between molecular orbitals and graphene edge states. These results demonstrate how the quantum nature of electron transmission at the nanoscale can enhance, rather than degrade, device performance, and highlight directions for future development of miniaturized electronics.

2.
J Phys Chem C Nanomater Interfaces ; 127(28): 13751-13758, 2023 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-37528901

RESUMO

We report a combined experimental and theoretical study of a series of thiomethyl (SMe) anchored cross-conjugated molecules featuring an acyclic central bridging ketone and their analogous skipped-conjugated alcohol derivatives. Studies of these molecules in a gold|single-molecule|gold junction using scanning tunneling microscopy-break junction techniques reveal a similar conductance (G) value for both the cross-conjugated molecules and their skipped-conjugated partners. Theoretical studies based on density functional theory of the molecules in their optimum geometries in the junction reveal the reason for this similarity in conductance, as the predicted conductance for the alcohol series of compounds varies more with the tilt angle. Thermopower measurements reveal a higher Seebeck coefficient (S) for the cross-conjugated ketone molecules relative to the alcohol derivatives, with a particularly high S for the biphenyl derivative 3a (-15.6 µV/K), an increase of threefold compared to its alcohol analog. The predicted behavior of the quantum interference (QI) in this series of cross-conjugated molecules is found to be constructive, though the appearance of a destructive QI feature for 3a is due to the degeneracy of the HOMO orbital and may explain the enhancement of the value of S for this molecule.

3.
Chem Sci ; 13(28): 8380-8387, 2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35919728

RESUMO

Dialkynylferrocenes exhibit attractive electronic and rotational features that make them ideal candidates for use in molecular electronic applications. However previous works have primarily focussed on single-molecule studies, with limited opportunities to translate these features into devices. In this report, we utilise a variety of techniques to examine both the geometric and electronic structure of a range of 1,1'-dialkynylferrocene molecules, as either single-molecules, or as self-assembled monolayers. Previous single molecule studies have shown that similar molecules can adopt an 'open' conformation. However, in this work, DFT calculations, STM-BJ experiments and AFM imaging reveal that these molecules prefer to occupy a 'hairpin' conformation, where both alkynes point towards the metal surface. Interestingly we find that only one of the terminal anchor groups binds to the surface, though both the presence and nature of the second alkyne affect the thermoelectric properties of these systems. First, the secondary alkyne acts to affect the position of the frontier molecular orbitals, leading to increases in the Seebeck coefficient. Secondly, theoretical calculations suggested that rotating the secondary alkyne away from the surface acts to modulate thermoelectric properties. This work represents the first of its kind to examine the assembly of dialkynylferrocenes, providing valuable information about both their structure and electronic properties, as well as unveiling new ways in which both of these properties can be controlled.

4.
Nanoscale ; 12(27): 14682-14688, 2020 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-32618309

RESUMO

We report measurements on gold|single-molecule|gold junctions, using a modified scanning tunneling microscope-break junction (STM-BJ) technique, of the Seebeck coefficient and electrical conductance of a series of bridged biphenyl molecules, with meta connectivities to pyridyl anchor groups. These data are compared with a previously reported study of para-connected analogues. In agreement with a tight binding model, the electrical conductance of the meta series is relatively low and is sensitive to the nature of the bridging groups, whereas in the para case the conductance is higher and relatively insensitive to the presence of the bridging groups. This difference in sensitivity arises from the presence of destructive quantum interference in the π system of the unbridged aromatic core, which is alleviated to different degrees by the presence of bridging groups. More precisely, the Seebeck coefficient of meta-connected molecules was found to vary between -6.1 µV K-1 and -14.1 µV K-1, whereas that of the para-connected molecules varied from -5.5 µV K-1 and -9.0 µV K-1.

5.
J Am Chem Soc ; 142(19): 8555-8560, 2020 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-32343894

RESUMO

The realization of self-assembled molecular-electronic films, whose room-temperature transport properties are controlled by quantum interference (QI), is an essential step in the scale-up of QI effects from single molecules to parallel arrays of molecules. Recently, the effect of destructive QI (DQI) on the electrical conductance of self-assembled monolayers (SAMs) has been investigated. Here, through a combined experimental and theoretical investigation, we demonstrate chemical control of different forms of constructive QI (CQI) in cross-plane transport through SAMs and assess its influence on cross-plane thermoelectricity in SAMs. It is known that the electrical conductance of single molecules can be controlled in a deterministic manner, by chemically varying their connectivity to external electrodes. Here, by employing synthetic methodologies to vary the connectivity of terminal anchor groups around aromatic anthracene cores, and by forming SAMs of the resulting molecules, we clearly demonstrate that this signature of CQI can be translated into SAM-on-gold molecular films. We show that the conductance of vertical molecular junctions formed from anthracene-based molecules with two different connectivities differ by a factor of approximately 16, in agreement with theoretical predictions for their conductance ratio based on CQI effects within the core. We also demonstrate that for molecules with thioether anchor groups, the Seebeck coefficient of such films is connectivity dependent and with an appropriate choice of connectivity can be boosted by ∼50%. This demonstration of QI and its influence on thermoelectricity in SAMs represents a critical step toward functional ultra-thin-film devices for future thermoelectric and molecular-scale electronics applications.

6.
J Phys Chem Lett ; 10(20): 6419-6424, 2019 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-31577147

RESUMO

A key area of activity in contemporary molecular electronics is the chemical control of conductance of molecular junctions and devices. Here we study and modify a range of pyrrolodipyridines (carbazole-like) molecular wires. We are able to change the electrical conductance and quantum interference patterns by chemically regulating the bridging nitrogen atom in the tricyclic ring system. A series of eight different N-substituted pyrrolodipyridines has been synthesized and subjected to single-molecule electrical characterization using an STM break junction. Correlations of these experimental data with theoretical calculations underline the importance of the pyrrolic nitrogen in facilitating conductance across the molecular bridge and controlling quantum interference. The large chemical modulation for the meta-connected series is not apparent for the para-series, showing the competition between (i) meta-connectivity quantum interference phenomena and (ii) the ability of the pyrrolic nitrogen to facilitate conductance, that can be modulated by chemical substitution.

7.
Chem Sci ; 10(8): 2396-2403, 2019 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-30881668

RESUMO

Interference features in the transmission spectra can dominate charge transport in metal-molecule-metal junctions when they occur close to the contact Fermi energy (E F). Here, we show that by forming a charge-transfer complex with tetracyanoethylene (TCNE) we can introduce new constructive interference features in the transmission profile of electron-rich, thiophene-based molecular wires that almost coincide with E F. Complexation can result in a large enhancement of junction conductance, with very efficient charge transport even at relatively large molecular lengths. For instance, we report a conductance of 10-3 G 0 (∼78 nS) for the ∼2 nm long α-quaterthiophene:TCNE complex, almost two orders of magnitude higher than the conductance of the bare molecular wire. As the conductance of the complexes is remarkably independent of features such as the molecular backbone and the nature of the contacts to the electrodes, our results strongly suggest that the interference features are consistently pinned near to the Fermi energy of the metallic leads. Theoretical studies indicate that the semi-occupied nature of the charge-transfer orbital is not only important in giving rise to the latter effect, but also could result in spin-dependent transport for the charge-transfer complexes. These results therefore present a simple yet effective way to increase charge transport efficiency in long and poorly conductive molecular wires, with important repercussions in single-entity thermoelectronics and spintronics.

8.
Sci Adv ; 4(10): eaat8237, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30333991

RESUMO

Molecular transistors operating in the quantum tunneling regime represent potential electronic building blocks for future integrated circuits. However, due to their complex fabrication processes and poor stability, traditional molecular transistors can only operate stably at cryogenic temperatures. Here, through a combined experimental and theoretical investigation, we demonstrate a new design of vertical molecular tunneling transistors, with stable switching operations up to room temperature, formed from cross-plane graphene/self-assembled monolayer (SAM)/gold heterostructures. We show that vertical molecular junctions formed from pseudo-p-bis((4-(acetylthio)phenyl)ethynyl)-p-[2,2]cyclophane (PCP) SAMs exhibit destructive quantum interference (QI) effects, which are absent in 1,4-bis(((4-acetylthio)phenyl)ethynyl)benzene (OPE3) SAMs. Consequently, the zero-bias differential conductance of the former is only about 2% of the latter, resulting in an enhanced on-off current ratio for (PCP) SAMs. Field-effect control is achieved using an ionic liquid gate, whose strong vertical electric field penetrates through the graphene layer and tunes the energy levels of the SAMs. The resulting on-off current ratio achieved in PCP SAMs can reach up to ~330, about one order of magnitude higher than that of OPE3 SAMs. The demonstration of molecular junctions with combined QI effect and gate tunability represents a critical step toward functional devices in future molecular-scale electronics.

9.
Angew Chem Int Ed Engl ; 56(48): 15378-15382, 2017 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-29044889

RESUMO

A key target in molecular electronics has been molecules having switchable electrical properties. Switching between two electrical states has been demonstrated using such stimuli as light, electrochemical voltage, complexation and mechanical modulation. A classic example of the latter is the switching of 4,4'-bipyridine, leading to conductance modulation of around 1 order of magnitude. Here, we describe the use of side-group chemistry to control the properties of a single-molecule electromechanical switch, which can be cycled between two conductance states by repeated compression and elongation. While bulky alkyl substituents inhibit the switching behavior, π-conjugated side-groups reinstate it. DFT calculations show that weak interactions between aryl moieties and the metallic electrodes are responsible for the observed phenomenon. This represents a significant expansion of the single-molecule electronics "tool-box" for the design of junctions with electromechanical properties.

11.
ACS Nano ; 4(12): 7401-6, 2010 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-21082817

RESUMO

The highly doped electrodes of a vertical silicon nanogap device have been bridged by a 5.85 nm long molecular wire, which was synthesized in situ by grafting 4-ethynylbenzaldehyde via C-Si links to the top and bottom electrodes and thereafter by coupling an amino-terminated fluorene unit to the aldehyde groups of the activated electrode surfaces. The number of bridging molecules is constrained by relying on surface roughness to match the 5.85 nm length with an electrode gap that is nominally 1 nm wider and may be controlled by varying the reaction time: the device current increases from ≤1 pA at 1 V following the initial grafting step to 10-100 nA at 1 V when reacted for 5-15 min with the amino-terminated linker and 10 µA when reacted for 16-53 h. It is the first time that both ends of a molecular wire have been directly grafted to silicon electrodes, and these molecule-induced changes are reversible. The bridges detach when the device is rinsed with dilute acid solution, which breaks the imine links of the in situ formed wire and causes the current to revert to the subpicoampere leakage value of the 4-ethynylbenzaldehyde-grafted nanogap structure.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...