Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-22275163

RESUMO

Measurement of quantitative antibody responses are increasingly important in evaluating the immune response to infection and vaccination. In this study we describe the validation of a quantitative, multiplex serologic assay utilising an electrochemiluminescence platform, which measures IgG against the receptor binding domain (RBD), spike S1 and S2 subunits and nucleocapsid antigens of SARS-CoV-2. The assay displayed a sensitivity ranging from 73-91% and specificity from 90 to 96% in detecting previous infection with SARS-CoV-2 depending on antigenic target and time since infection, and this assay highly correlated with commercially available assays. The within-plate coefficient of variation ranged from 3.8-3.9% and the inter-plate coefficient of variation from 11-13% for each antigen.

2.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-488051

RESUMO

Long COVID, a type of Post-Acute Sequelae of SARS CoV-2 infection (PASC), has been associated with sustained elevated levels of immune activation and inflammation. However, the pathophysiological mechanisms that drive this inflammation remain unknown. Inflammation during acute Coronavirus Disease 2019 (COVID-19) could be exacerbated by microbial translocation (from the gut and/or lung) to the blood. Whether microbial translocation contributes to inflammation during PASC is unknown. We found higher levels of fungal translocation - measured as {beta}-glucan, a fungal cell wall polysaccharide - in the plasma of individuals experiencing PASC compared to those without PASC or SARS-CoV-2 negative controls. The higher {beta}-glucan correlated with higher levels of markers of inflammation and elevated levels of host metabolites involved in activating N-Methyl-D-aspartate receptors (such as metabolites within the tryptophan catabolism pathway) with established neuro-toxic properties. Mechanistically, {beta}-glucan can directly induce inflammation by binding to myeloid cells (via the Dectin-1 receptor) and activating Syk/NF-{kappa}B signaling. Using an in vitro Dectin-1/NF-{kappa}B reporter model, we found that plasma from individuals experiencing PASC induced higher NF-{kappa}B signaling compared to plasma from SARS-CoV-2 negative controls. This higher NF-{kappa}B signaling was abrogated by the Syk inhibitor Piceatannol. These data suggest a potential targetable mechanism linking fungal translocation and inflammation during PASC.

3.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20248381

RESUMO

BackgroundAlthough reports suggest that most individuals with COVID-19 develop detectable antibodies post infection, the kinetics, durability, and relative differences between IgM and IgG responses beyond the first few weeks after symptom onset remain poorly understood. MethodsWithin a large, well-phenotyped, diverse, prospective cohort of subjects with and without SARS-CoV-2 PCR-confirmed infection and historical controls derived from cohorts with high prevalence of viral coinfections and samples taken during prior flu seasons, we measured SARS-CoV-2 serological responses (both IgG and IgM) using commercially available assays. We calculated sensitivity and specificity, relationship with disease severity and mapped the kinetics of antibody responses over time using generalised additive models. ResultsWe analysed 1,001 samples from 752 subjects, 327 with confirmed SARS-CoV-2 (29.7% with severe disease) spanning a period of 90 days from symptom onset. Sensitivity was lower (44.1-47.1%) early (<10 days) after symptom onset but increased to >80% after 10 days. IgM positivity increased earlier than IgG-targeted assays but positivity peaked between day 32 and 38 post onset of symptoms and declined thereafter, a dynamic that was confirmed when antibody levels were analysed, with more rapid decline observed with IgM. Early (<10 days) IgM but not IgG levels were significantly higher in those who subsequently developed severe disease (signal / cut-off 4.20 (0.75-17.93) versus 1.07 (0.21-5.46), P=0.048). ConclusionsThis study suggests that post-infectious antibody responses in those with confirmed COVID-19 begin to decline relatively early post infection and suggests a potential role for higher IgM levels early in infection predicting subsequent disease severity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...