Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Bioeng Biotechnol ; 12: 1355915, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38605993

RESUMO

The ability to manipulate cellular function using an external stimulus is a powerful strategy for studying complex biological phenomena. One approach to modulate the function of the cellular environment is split proteins. In this method, a biologically active protein or an enzyme is fragmented so that it reassembles only upon a specific stimulus. Although many tools are available to induce these systems, nature has provided other mechanisms to expand the split protein toolbox. Here, we show a novel method for reconstituting split proteins using magnetic stimulation. We found that the electromagnetic perceptive gene (EPG) changes conformation due to magnetic field stimulation. By fusing split fragments of a certain protein to both termini of the EPG, the fragments can be reassembled into a functional protein under magnetic stimulation due to conformational change. We show this effect with three separate split proteins: NanoLuc, APEX2, and herpes simplex virus type-1 thymidine kinase. Our results show, for the first time, that reconstitution of split proteins can be achieved only with magnetic fields. We anticipate that this study will be a starting point for future magnetically inducible split protein designs for cellular perturbation and manipulation. With this technology, we can help expand the toolbox of the split protein platform and allow better elucidation of complex biological systems.

2.
Open Biol ; 13(11): 230019, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37989224

RESUMO

Studies at the cellular and molecular level of magnetoreception-sensing and responding to magnetic fields-are a relatively new research area. It appears that different mechanisms of magnetoreception in animals evolved from different origins, and, therefore, many questions about its mechanisms remain left open. Here we present new information regarding the Electromagnetic Perceptive Gene (EPG) from Kryptopterus vitreolus that may serve as part of the foundation to understanding and applying magnetoreception. Using HaloTag coupled with fluorescent ligands and phosphatidylinositol specific phospholipase C we show that EPG is associated with the membrane via glycosylphosphatidylinositol anchor. EPG's function of increasing intracellular calcium was also used to generate an assay using GCaMP6m to observe the function of EPG and to compare its function with that of homologous proteins. It was also revealed that EPG relies on a motif of three phenylalanine residues to function-stably swapping these residues using site directed mutagenesis resulted in a loss of function in EPG. This information not only expands upon our current understanding of magnetoreception but may provide a foundation and template to continue characterizing and discovering more within the emerging field.


Assuntos
Glicosilfosfatidilinositóis , Fenilalanina , Animais , Fosfatidilinositol Diacilglicerol-Liase , Fosfoinositídeo Fosfolipase C , Glicosilfosfatidilinositóis/metabolismo , Peixes , Mamíferos
3.
ACS Synth Biol ; 12(8): 2301-2309, 2023 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-37450884

RESUMO

Genetically encoded optical sensors and advancements in microscopy instrumentation and techniques have revolutionized the scientific toolbox available for probing complex biological processes such as release of specific neurotransmitters. Most genetically encoded optical sensors currently used are based on fluorescence and have been highly successful tools for single-cell imaging in superficial brain regions. However, there remains a need to develop new tools for reporting neuronal activity in vivo within deeper structures without the need for hardware such as lenses or fibers to be implanted within the brain. Our approach to this problem is to replace the fluorescent elements of the existing biosensors with bioluminescent elements. This eliminates the need of external light sources to illuminate the sensor, thus allowing deeper brain regions to be imaged noninvasively. Here, we report the development of the first genetically encoded neurotransmitter indicators based on bioluminescent light emission. These probes were optimized by high-throughput screening of linker libraries. The selected probes exhibit robust changes in light output in response to the extracellular presence of the excitatory neurotransmitter glutamate. We expect this new approach to neurotransmitter indicator design to enable the engineering of specific bioluminescent probes for multiple additional neurotransmitters in the future, ultimately allowing neuroscientists to monitor activity associated with a specific neurotransmitter as it relates to behavior in a variety of neuronal and psychiatric disorders, among many other applications.


Assuntos
Técnicas Biossensoriais , Ácido Glutâmico , Humanos , Técnicas Biossensoriais/métodos , Encéfalo , Neurotransmissores/genética , Imagem Molecular
4.
bioRxiv ; 2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36711778

RESUMO

Several hundreds of tons of gadolinium-based contrast agents (GBCAs) are being dumped into the environment every year. Although macrocyclic GBCAs exhibit superior stability compared to their linear counterparts, we have found that the structural integrity of chelates are susceptible to ultraviolet light, regardless of configuration. In this study, we present a synthetic protein termed GLamouR that binds and reports gadolinium in an intensiometric manner. We then explore the extraction of gadolinium from GBCA-spiked artificial urine samples and investigate if the low picomolar concentrations reported in gadolinium-contaminated water sources pose a barrier for bioremediation. Based on promising results, we anticipate GLamouR can be used for detecting and mining REEs beyond gadolinium as well and hope to expand the biological toolbox for such applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...