Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Comput Struct Biotechnol J ; 23: 2580-2594, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39021582

RESUMO

Hydroxylation of prolines to 4-trans-hydroxyproline (Hyp) is mediated by prolyl-4 hydroxylases (P4Hs). In plants, Hyps occur in Hydroxyproline-rich glycoproteins (HRGPs), and are frequently O-glycosylated. While both modifications are important, e.g. for cell wall stability, they are undesired in plant-made pharmaceuticals. Sequence motifs for prolyl-hydroxylation were proposed but did not include data from mosses, such as Physcomitrella. We identified six moss P4Hs by phylogenetic reconstruction. Our analysis of 73 Hyps in 24 secretory proteins from multiple mass spectrometry datasets revealed that prolines near other prolines, alanine, serine, threonine and valine were preferentially hydroxylated. About 95 % of Hyps were predictable with combined established methods. In our data, AOV was the most frequent pattern. A combination of 443 AlphaFold models and MS data with 3000 prolines found Hyps mainly on protein surfaces in disordered regions. Moss-produced human erythropoietin (EPO) exhibited O-glycosylation with arabinose chains on two Hyps. This modification was significantly reduced in a p4h1 knock-out (KO) Physcomitrella mutant. Quantitative proteomics with different p4h mutants revealed specific changes in protein amounts, and a modified prolyl-hydroxylation pattern, suggesting a differential function of the Physcomitrella P4Hs. Quantitative RT-PCR revealed a differential effect of single p4h KOs on the expression of the other five p4h genes, suggesting a partial compensation of the mutation. AlphaFold-Multimer models for Physcomitrella P4H1 and its target EPO peptide superposed with the crystal structure of Chlamydomonas P4H1 suggested significant amino acids in the active centre of the enzyme and revealed differences between P4H1 and the other Physcomitrella P4Hs.

2.
Cell Microbiol ; 19(5)2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-27892646

RESUMO

Having entered the mature human erythrocyte, the malaria parasite survives and propagates within a parasitophorous vacuole, a membrane-bound compartment separating the parasite from the host cell cytosol. The bounding membrane of this vacuole, referred to as the parasitophorous vacuolar membrane (PVM), contains parasite-encoded proteins, but how these membrane proteins are trafficked to the PVM remains unknown. Here, we have studied the trafficking of PfExp1 to the PVM. We find that trafficking of PfExp1 to the PVM is independent of the folding state of the protein and also continues unabated upon inactivation of the PVM translocon Plasmodium Translocon of Exported proteins (PTEX). Our data strongly suggest that the trafficking of membrane proteins to the PVM occurs by as yet unknown mechanism, potentially unique to Plasmodium.


Assuntos
Antígenos de Protozoários/metabolismo , Plasmodium falciparum/fisiologia , Proteínas de Protozoários/metabolismo , Canais de Translocação SEC/metabolismo , Vacúolos/metabolismo , Células Cultivadas , Eritrócitos/parasitologia , Humanos , Dobramento de Proteína , Transporte Proteico , Vacúolos/parasitologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA