Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 13: 892086, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35784337

RESUMO

Interfaces between the nervous and immune systems have been shown essential for the coordination and regulation of immune responses. Non-invasive ultrasound stimulation targeted to the spleen has recently been shown capable of activating one such interface, the splenic cholinergic anti-inflammatory pathway (CAP). Over the past decade, CAP and other neuroimmune pathways have been activated using implanted nerve stimulators and tested to prevent cytokine release and inflammation. However, CAP studies have typically been performed in models of severe, systemic (e.g., endotoxemia) or chronic inflammation (e.g., collagen-induced arthritis or DSS-induced colitis). Herein, we examined the effects of activation of the splenic CAP with ultrasound in a model of local bacterial infection by lung instillation of 105 CFU of Streptococcus pneumoniae. We demonstrate a time-dependent effect of CAP activation on the cytokine response assay during infection progression. CAP activation-induced cytokine suppression is absent at intermediate times post-infection (16 hours following inoculation), but present during the early (4 hours) and later phases (48 hours). These results indicate that cytokine inhibition associated with splenic CAP activation is not observed at all timepoints following bacterial infection and highlights the importance of further studying neuroimmune interfaces within the context of different immune system and inflammatory states.


Assuntos
Pneumonia , Baço , Anti-Inflamatórios/farmacologia , Citocinas/metabolismo , Humanos , Inflamação/metabolismo , Pneumonia/metabolismo , Nervo Vago/fisiologia
2.
Cell Death Differ ; 29(4): 806-817, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34754079

RESUMO

Cancer cells' ability to inhibit apoptosis is key to malignant transformation and limits response to therapy. Here, we performed multiplexed immunofluorescence analysis on tissue microarrays with 373 cores from 168 patients, segmentation of 2.4 million individual cells, and quantification of 18 cell lineage and apoptosis proteins. We identified an enrichment for BCL2 in immune, and BAK, SMAC, and XIAP in cancer cells. Ordinary differential equation-based modeling of apoptosis sensitivity at single-cell resolution was conducted and an atlas of inter- and intra-tumor heterogeneity in apoptosis susceptibility generated. Systems modeling at single-cell resolution identified an enhanced sensitivity of cancer cells to mitochondrial permeabilization and executioner caspase activation compared to immune and stromal cells, but showed significant inter- and intra-tumor heterogeneity.


Assuntos
Neoplasias Colorretais , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X , Apoptose/fisiologia , Neoplasias Colorretais/metabolismo , Humanos , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/metabolismo
3.
PLoS One ; 14(12): e0219724, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31881020

RESUMO

Glioma is recognized to be a highly heterogeneous CNS malignancy, whose diverse cellular composition and cellular interactions have not been well characterized. To gain new clinical- and biological-insights into the genetically-bifurcated IDH1 mutant (mt) vs wildtype (wt) forms of glioma, we integrated data from protein, genomic and MR imaging from 20 treatment-naïve glioma cases and 16 recurrent GBM cases. Multiplexed immunofluorescence (MxIF) was used to generate single cell data for 43 protein markers representing all cancer hallmarks, Genomic sequencing (exome and RNA (normal and tumor) and magnetic resonance imaging (MRI) quantitative features (protocols were T1-post, FLAIR and ADC) from whole tumor, peritumoral edema and enhancing core vs equivalent normal region were also collected from patients. Based on MxIF analysis, 85,767 cells (glioma cases) and 56,304 cells (GBM cases) were used to generate cell-level data for 24 biomarkers. K-means clustering was used to generate 7 distinct groups of cells with divergent biomarker profiles and deconvolution was used to assign RNA data into three classes. Spatial and molecular heterogeneity metrics were generated for the cell data. All features were compared between IDH mt and IDHwt patients and were finally combined to provide a holistic/integrated comparison. Protein expression by hallmark was generally lower in the IDHmt vs wt patients. Molecular and spatial heterogeneity scores for angiogenesis and cell invasion also differed between IDHmt and wt gliomas irrespective of prior treatment and tumor grade; these differences also persisted in the MR imaging features of peritumoral edema and contrast enhancement volumes. A coherent picture of enhanced angiogenesis in IDHwt tumors was derived from multiple platforms (genomic, proteomic and imaging) and scales from individual proteins to cell clusters and heterogeneity, as well as bulk tumor RNA and imaging features. Longer overall survival for IDH1mt glioma patients may reflect mutation-driven alterations in cellular, molecular, and spatial heterogeneity which manifest in discernable radiological manifestations.


Assuntos
Glioma/genética , Isocitrato Desidrogenase/genética , Adulto , Idoso , Biomarcadores Tumorais/genética , Neoplasias Encefálicas/patologia , Estudos de Casos e Controles , Feminino , Imunofluorescência/métodos , Heterogeneidade Genética , Humanos , Isocitrato Desidrogenase/metabolismo , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Mutação , Gradação de Tumores , Proteômica , Análise de Sequência de RNA/métodos , Análise de Célula Única , Sequenciamento do Exoma/métodos
4.
Front Immunol ; 9: 638, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29755449

RESUMO

The immune and nervous systems are two major organ systems responsible for host defense and memory. Both systems achieve memory and learning that can be retained, retrieved, and utilized for decades. Here, we report the surprising discovery that peripheral sensory neurons of the dorsal root ganglia (DRGs) of immunized mice contain antigen-specific antibodies. Using a combination of rigorous molecular genetic analyses, transgenic mice, and adoptive transfer experiments, we demonstrate that DRGs do not synthesize these antigen-specific antibodies, but rather sequester primarily IgG1 subtype antibodies. As revealed by RNA-seq and targeted quantitative PCR (qPCR), dorsal root ganglion (DRG) sensory neurons harvested from either naïve or immunized mice lack enzymes (i.e., RAG1, RAG2, AID, or UNG) required for generating antibody diversity and, therefore, cannot make antibodies. Additionally, transgenic mice that express a reporter fluorescent protein under the control of Igγ1 constant region fail to express Ighg1 transcripts in DRG sensory neurons. Furthermore, neural sequestration of antibodies occurs in mice rendered deficient in neuronal Rag2, but antibody sequestration is not observed in DRG sensory neurons isolated from mice that lack mature B cells [e.g., Rag1 knock out (KO) or µMT mice]. Finally, adoptive transfer of Rag1-deficient bone marrow (BM) into wild-type (WT) mice or WT BM into Rag1 KO mice revealed that antibody sequestration was observed in DRG sensory neurons of chimeric mice with WT BM but not with Rag1-deficient BM. Together, these results indicate that DRG sensory neurons sequester and retain antigen-specific antibodies released by antibody-secreting plasma cells. Coupling this work with previous studies implicating DRG sensory neurons in regulating antigen trafficking during immunization raises the interesting possibility that the nervous system collaborates with the immune system to regulate antigen-mediated responses.


Assuntos
Anticorpos/metabolismo , Linfócitos B/imunologia , Gânglios Espinais/patologia , Inflamação/imunologia , Células Receptoras Sensoriais/metabolismo , Animais , Antígenos/imunologia , Células Cultivadas , Imunidade Humoral , Imunização , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neuroimunomodulação , Células Receptoras Sensoriais/imunologia
5.
PLoS One ; 12(11): e0188878, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29190747

RESUMO

BACKGROUND: Tumor heterogeneity can manifest itself by sub-populations of cells having distinct phenotypic profiles expressed as diverse molecular, morphological and spatial distributions. This inherent heterogeneity poses challenges in terms of diagnosis, prognosis and efficient treatment. Consequently, tools and techniques are being developed to properly characterize and quantify tumor heterogeneity. Multiplexed immunofluorescence (MxIF) is one such technology that offers molecular insight into both inter-individual and intratumor heterogeneity. It enables the quantification of both the concentration and spatial distribution of 60+ proteins across a tissue section. Upon bioimage processing, protein expression data can be generated for each cell from a tissue field of view. RESULTS: The Multi-Omics Heterogeneity Analysis (MOHA) tool was developed to compute tissue heterogeneity metrics from MxIF spatially resolved tissue imaging data. This technique computes the molecular state of each cell in a sample based on a pathway or gene set. Spatial states are then computed based on the spatial arrangements of the cells as distinguished by their respective molecular states. MOHA computes tissue heterogeneity metrics from the distributions of these molecular and spatially defined states. A colorectal cancer cohort of approximately 700 subjects with MxIF data is presented to demonstrate the MOHA methodology. Within this dataset, statistically significant correlations were found between the intratumor AKT pathway state diversity and cancer stage and histological tumor grade. Furthermore, intratumor spatial diversity metrics were found to correlate with cancer recurrence. CONCLUSIONS: MOHA provides a simple and robust approach to characterize molecular and spatial heterogeneity of tissues. Research projects that generate spatially resolved tissue imaging data can take full advantage of this useful technique. The MOHA algorithm is implemented as a freely available R script (see supplementary information).


Assuntos
Neoplasias Colorretais/patologia , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Humanos
6.
PLoS One ; 8(5): e63369, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23704901

RESUMO

In the future, we may be faced with the need to provide treatment for an emergent biological threat against which existing vaccines and drugs have limited efficacy or availability. To prepare for this eventuality, our objective was to use a metabolic network-based approach to rapidly identify potential drug targets and prospectively screen and validate novel small-molecule antimicrobials. Our target organism was the fully virulent Francisella tularensis subspecies tularensis Schu S4 strain, a highly infectious intracellular pathogen that is the causative agent of tularemia and is classified as a category A biological agent by the Centers for Disease Control and Prevention. We proceeded with a staggered computational and experimental workflow that used a strain-specific metabolic network model, homology modeling and X-ray crystallography of protein targets, and ligand- and structure-based drug design. Selected compounds were subsequently filtered based on physiological-based pharmacokinetic modeling, and we selected a final set of 40 compounds for experimental validation of antimicrobial activity. We began screening these compounds in whole bacterial cell-based assays in biosafety level 3 facilities in the 20th week of the study and completed the screens within 12 weeks. Six compounds showed significant growth inhibition of F. tularensis, and we determined their respective minimum inhibitory concentrations and mammalian cell cytotoxicities. The most promising compound had a low molecular weight, was non-toxic, and abolished bacterial growth at 13 µM, with putative activity against pantetheine-phosphate adenylyltransferase, an enzyme involved in the biosynthesis of coenzyme A, encoded by gene coaD. The novel antimicrobial compounds identified in this study serve as starting points for lead optimization, animal testing, and drug development against tularemia. Our integrated in silico/in vitro approach had an overall 15% success rate in terms of active versus tested compounds over an elapsed time period of 32 weeks, from pathogen strain identification to selection and validation of novel antimicrobial compounds.


Assuntos
Antibacterianos/farmacologia , Descoberta de Drogas , Francisella tularensis/efeitos dos fármacos , Francisella tularensis/metabolismo , Redes e Vias Metabólicas/efeitos dos fármacos , Antibacterianos/química , Antibacterianos/farmacocinética , Proteínas de Bactérias/química , Simulação por Computador , Cristalografia por Raios X , Avaliação Pré-Clínica de Medicamentos , Humanos , Cinética , Testes de Sensibilidade Microbiana , Viabilidade Microbiana/efeitos dos fármacos
7.
J Pharmacokinet Pharmacodyn ; 39(1): 37-54, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22161221

RESUMO

We developed a detailed, whole-body physiologically based pharmacokinetic (PBPK) modeling tool for calculating the distribution of pharmaceutical agents in the various tissues and organs of a human or animal as a function of time. Ordinary differential equations (ODEs) represent the circulation of body fluids through organs and tissues at the macroscopic level, and the biological transport mechanisms and biotransformations within cells and their organelles at the molecular scale. Each major organ in the body is modeled as composed of one or more tissues. Tissues are made up of cells and fluid spaces. The model accounts for the circulation of arterial and venous blood as well as lymph. Since its development was fueled by the need to accurately predict the pharmacokinetic properties of imaging agents, BioDMET is more complex than most PBPK models. The anatomical details of the model are important for the imaging simulation endpoints. Model complexity has also been crucial for quickly adapting the tool to different problems without the need to generate a new model for every problem. When simpler models are preferred, the non-critical compartments can be dynamically collapsed to reduce unnecessary complexity. BioDMET has been used for imaging feasibility calculations in oncology, neurology, cardiology, and diabetes. For this purpose, the time concentration data generated by the model is inputted into a physics-based image simulator to establish imageability criteria. These are then used to define agent and physiology property ranges required for successful imaging. BioDMET has lately been adapted to aid the development of antimicrobial therapeutics. Given a range of built-in features and its inherent flexibility to customization, the model can be used to study a variety of pharmacokinetic and pharmacodynamic problems such as the effects of inter-individual differences and disease-states on drug pharmacokinetics and pharmacodynamics, dosing optimization, and inter-species scaling. While developing a tool to aid imaging agent and drug development, we aimed at accelerating the acceptance and broad use of PBPK modeling by providing a free mechanistic PBPK software that is user friendly, easy to adapt to a wide range of problems even by non-programmers, provided with ready-to-use parameterized models and benchmarking data collected from the peer-reviewed literature.


Assuntos
Simulação por Computador , Modelos Biológicos , Farmacocinética , Algoritmos , Estruturas Animais/metabolismo , Animais , Transporte Biológico/fisiologia , Biotransformação/fisiologia , Líquidos Corporais/metabolismo , Cefotaxima/análogos & derivados , Cefotaxima/farmacocinética , Cefalosporinas/farmacocinética , Meios de Contraste/farmacocinética , Bases de Dados Factuais , Células Eucarióticas/metabolismo , Cobaias , Haplorrinos , Humanos , Internet , Iohexol/farmacocinética , Camundongos , Preparações Farmacêuticas/sangue , Preparações Farmacêuticas/química , Preparações Farmacêuticas/metabolismo , Ratos , Reprodutibilidade dos Testes , Software , Distribuição Tecidual/fisiologia , Interface Usuário-Computador , Cefpiroma
8.
Int J Biomed Imaging ; 2011: 953806, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21860614

RESUMO

The goal of this study was to provide a feasibility assessment for PET imaging of multiple sclerosis (MS) lesions based on their decreased myelin content relative to the surrounding normal-appearing brain tissue. The imaging agent evaluated for this purpose is a molecule that binds strongly and specifically to myelin basic protein. Physiology-based pharmacokinetic modeling combined with PET image simulation applied to a brain model was used to examine whether such an agent would allow the differentiation of artificial lesions 4-10 mm in diameter from the surrounding normal-looking white and gray matter. Furthermore, we examined how changes in agent properties, model parameters, and experimental conditions can influence imageability, identifying a set of conditions under which imaging of MS lesions might be feasible. Based on our results, we concluded that PET imaging has the potential to become a useful complementary method to MRI for MS diagnosis and therapy monitoring.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...