Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
AIAA J ; 57(8): 3322-3338, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31631891

RESUMO

Active flow control (AFC) subscale experiments were conducted at the Lucas Wind Tunnel of the California Institute of Technology. Tests were performed on a generic vertical tail model at low speeds. Fluidic oscillators were used at the trailing edge of the main element (vertical stabilizer) to redirect the flow over the rudder and delay or prevent flow separation. Side force increases in excess of 50% were achieved with a 2% momentum coefficient (C µ ) input. The results indicated that a collective C µ of about 1% could increase the side force by 30-50%. This result is achieved by reducing the spanwise flow on the swept back wings that contributes to early flow separation near their tips. These experiments provided the technical backdrop to test the full-scale Boeing 757 vertical tail model equipped with a fluidic oscillator system at the National Full-scale Aerodynamics Complex 40-by 80-foot Wind Tunnel, NASA Ames Research Center. The C µ is shown to be an important parameter for scaling a fluidic oscillator AFC system from subscale to full-scale wind tunnel tests. The results of these tests provided the required rationale to use a fluidic oscillator AFC configuration for a follow-on flight test on the Boeing 757 ecoDemonstrator.

2.
Rev Sci Instrum ; 85(12): 123113, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25554278

RESUMO

Digital holographic microscopy is an ideal tool for investigation of microbial motility. However, most designs do not exhibit sufficient spatial resolution for imaging bacteria. In this study we present an off-axis Mach-Zehnder design of a holographic microscope with spatial resolution of better than 800 nm and the ability to resolve bacterial samples at varying densities over a 380 µm × 380 µm × 600 µm three-dimensional field of view. Larger organisms, such as protozoa, can be resolved in detail, including cilia and flagella. The instrument design and performance are presented, including images and tracks of bacterial and protozoal mixed samples and pure cultures of six selected species. Organisms as small as 1 µm (bacterial spores) and as large as 60 µm (Paramecium bursaria) may be resolved and tracked without changes in the instrument configuration. Finally, we present a dilution series investigating the maximum cell density that can be imaged, a type of analysis that has not been presented in previous holographic microscopy studies.


Assuntos
Holografia/instrumentação , Microscopia/instrumentação , Bactérias , Desenho de Equipamento , Holografia/métodos , Microscopia/métodos , Paramecium , Esporos Bacterianos , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA