Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 113
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Hazard Mater ; 472: 134522, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38714057

RESUMO

Electro-catalytic conversion of nitrate (NO3-) to ammonia (NH3) via the Nitrate Reduction to Ammonia (NORA) process represents a promising strategy for both ammonia synthesis and environmental remediation. Despite its potential, the efficiency of low-concentration NORA is often hindered by mass transfer limitations, competing byproducts (N2 and NO2-), and side reactions such as hydrogen evolution. This study introduces a novel pulsed electro-synthesis technique that alternates the potential to periodically accumulate and transform NO2- intermediates near a Cu2O@Pd electrode, enhancing the NORA process. Compared with that under potentiostatic conditions, the Cu2O@Pd electrodes exhibited a higher NORA activity under the optimized pulsed condition, where a NH3-N Faradaic efficiency (FE) of 81.2%, a yield rate of 1.08 mg h-1 cm-2 and a selectivity efficiency (SE) of 81.5%, were achieved. In-situ characterization revealed an enhancement mechanism characterized by optimized adsorption of the key *NO intermediate, followed by the hydrogenation path "*N → *NH → *NH2→ *NH3". Further investigations indicated the electro-catalytic synergies between Pd sites and Cu species, where the Pd atoms were the reaction sites for the H adsorption while the Cu species were responsible for the NO3- activation. This research offers a novel insight into a method of enhancing low-concentration NORA.

2.
Water Res ; 256: 121539, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38583335

RESUMO

Inorganic coagulants such as poly aluminum ferric chloride (Al/Fe) are applied conventionally to sewage sludge dewatering and can be retained in the sludge cake, causing its conductivity to increase and generate secondary pollution. To reduce these disadvantages, there is a need to develop alternative, more sustainable chemicals as substitutes for conventional inorganic coagulants. In the present investigation, the application of a polymeric chitosan quaternary ammonium salt (CQAS) is explored as a complete, or partial, replacement for Al/Fe in the context of sludge dewatering processes. Laboratory experiments using digested sewage sludge showed that CQAS could effectively substitute for over 80 % of the Al/Fe inorganic coagulant in the sludge dewatering process. This substitution resulted in a reduction of sludge cake conductivity by more than 50 %. Simulation of sludge dewatering curves and imaging of the sludge surface indicated that the addition of CQAS led to an increase in nanosized pores, and a decrease in the specific resistance of the sludge filter cake as the dosage of Al/Fe decreased to around 30 %. The variations of fluorescence emission, quantum yield and carboxylic and amino groups, suggested that the chelating of Al/Fe decreased due to the bridging effects of CQAS. The CQAS had different flocculation bridging effects on various EPS fractions, which varied the amount of protein chelated with Al/Fe in each fraction. This study provides new information about the benefits of replacing conventional inorganic coagulants with natural organic polymers for sewage sludge dewatering, in terms of reduced sludge cake conductivity and greater dry solids content.


Assuntos
Quitosana , Compostos Férricos , Esgotos , Esgotos/química , Quitosana/química , Compostos Férricos/química , Compostos de Amônio Quaternário/química , Floculação , Cloretos/química , Eliminação de Resíduos Líquidos/métodos , Alumínio/química
3.
Environ Sci Technol ; 58(13): 5899-5910, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38502922

RESUMO

The established benefits of ozone on microbial pathogen inactivation, natural organic matter degradation, and inorganic/organic contaminant oxidation have favored its application in drinking water treatment. However, viable bacteria are still present after the ozonation of raw water, bringing a potential risk to membrane filtration systems in terms of biofilm accumulation and fouling. In this study, we shed light on the role of the specific ozone dose (0.5 mg-O3/mg-C) in biofilm accumulation during long-term membrane ultrafiltration. Results demonstrated that ozonation transformed the molecular structure of influent dissolved organic matter (DOM), producing fractions that were highly bioavailable at a specific ozone dose of 0.5, which was inferred to be a turning point. With the increase of the specific ozone dose, the biofilm microbial consortium was substantially shifted, demonstrating a decrease in richness and diversity. Unexpectedly, the opportunistic pathogen Legionella was stimulated and occurred in approximately 40% relative abundance at the higher specific ozone dose of 1. Accordingly, the membrane filtration system with a specific ozone dose of 0.5 presented a lower biofilm thickness, a weaker fluorescence intensity, smaller concentrations of polysaccharides and proteins, and a lower Raman activity, leading to a lower hydraulic resistance, compared to that with a specific ozone dose of 1. Our findings highlight the interaction mechanism between molecular-level DOM composition, biofilm microbial consortium, and membrane filtration performance, which provides an in-depth understanding of the impact of ozonation on biofilm accumulation.


Assuntos
Ozônio , Purificação da Água , Membranas Artificiais , Ultrafiltração , Biofilmes
4.
Water Res ; 254: 121355, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38430755

RESUMO

Stormwater harvesting (SWH) addresses the UN's Sustainable Development Goals (SDGs). Conventional stormwater control measures (SCMs) effectively remove particulate and colloidal contaminants from urban runoff; however, they fail to retain dissolved contaminants, particularly substances of concern like polycyclic aromatic hydrocarbons (PAHs) and heavy metals (HMs), thereby hindering the SWH applicability. Here, inspired by protein folding in nature, we reported a novel biomimetic SCM for the efficient removal of dissolved PAHs and HMs from urban runoff. Lab-scale tests were conducted together with a more mechanistic investigation on how the contaminants were removed. By integrating hydrophobic organic chains with low-cost hydrophilic flocculant matrixes, our biomimetic flocculants achieved a 1.4-9.5 times removal of all detected dissolved PAHs and HMs, while enhancing the removal of a wide-spectrum of particulate and colloidal contaminants, compared to existing SCMs. Ecotoxicity, as indicated by newborn Daphnia magna as experimental organisms, was reduced from "acute toxicity" of the original runoff sample (toxic unit of ∼2.6) to "non-toxicity" (toxic unit < 0.4) of the treated water. The improved performance is attributed to the protein-folding-like features of the bioinspired flocculants providing: (i) stronger binding to PAHs (via hydrophobic association) and HMs (via coordination), and (ii) the ability of spontaneous aggregation. The bio-inspired approach in this work holds strong promise as an alternative or supplementary component in SCM systems, and is expected to contribute to sustainable water management practices in relation to SDGs.


Assuntos
Metais Pesados , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Hidrocarbonetos Policíclicos Aromáticos/análise , Poluentes Químicos da Água/química , Monitoramento Ambiental , Metais Pesados/análise
5.
Water Res ; 254: 121352, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38401286

RESUMO

Coagulation efficiency is heavily contingent upon a profound comprehension of the underlying mechanisms, facilitated by the evolution of coagulation theory. However, the role of anions, prevalent components in raw and wastewaters, has been relatively overlooked in this context. To address this gap, this study has investigated the impact of three common anions (i.e., chloride, sulfate, and phosphate) on Al-based coagulation. The results have shown that the influence of anions on coagulation depends predominantly on their ability to compete with hydroxyl groups throughout the entire coagulation process, encompassing hydrolysis, aggregation, and the growth of large flocs. Moreover, this competition is subject to the dual influence of both anion concentration and hydroxyl concentration (i.e., pH). The results have revealed the intricate interplay between anions and coagulants, their impact on floc structure, and their importance in optimizing coagulation efficiency and ensuring the production of high-quality water.


Assuntos
Sulfatos , Purificação da Água , Floculação , Ânions , Águas Residuárias , Cátions , Purificação da Água/métodos
6.
Water Res ; 253: 121268, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38340700

RESUMO

The release of nanoplastics (NPs) into the environment is growing due to the extensive use of plastic products. Numerous studies have confirmed the negative effects of NPs on microorganisms, which poses uncertainties concerning their impact on nanofiltration (NF) membrane biofouling. This study investigated the initial cell adhesion process, NF membrane biofouling kinetic processes and bacterial responses of Pseudomonas aeruginosa (P. aeruginosa) exposed to varied NPs concentrations (0-50 mg·L-1). Transcriptome analysis demonstrated that low concentration of NPs (0.1 mg·L-1) promoted bacterial quorum sensing, energy metabolism, exopolysaccharide biosynthesis and bacterial secretion systems. Correspondingly, the polysaccharide content increased remarkably to 2.77 times the unexposed control, which served as a protective barrier for bacteria to avoid the impact of NPs-induced stress. Suppressed homologous recombination, microbial metabolic potentials and flagellar assembly were detected in bacteria exposed to a high concentration (50 mg·L-1) of NPs, mainly due to the triggered reactive oxygen species (ROS) generation, genomic DNA damage, and decreased energy production. Overall, enhanced formation of the extracellular polymeric substances (EPS) and aggravated membrane flux decline were observed when NPs interacted with the membrane surface by cell secretions (low NPs levels) or cell lysis (high NPs levels). These findings shed light on understanding the microbial metabolism mechanism and membrane biofouling propensity with NPs stress at both the molecular and gene levels.


Assuntos
Incrustação Biológica , Microplásticos , Membranas Artificiais , Percepção de Quorum , Bactérias , Biofilmes
7.
Water Res ; 252: 121193, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38290239

RESUMO

Biofiltration is an environmentally 'green' technology that is compatible with the recently proposed sustainable development goals, and which has an increasingly important future in the field of water treatment. Here, we explored the impacts of bioelectrochemical integration on a bench-scale slow rate biofiltration system regarding its performance in reclaimed water treatment. Results showed that the short-term (<3 months) integration improved the removal of natural organic matter (NOM) (approximately 8.8%). After long-term (5 months and thereafter) integration, the cathodic charge transfer resistance was found to have a significant reduction from 2662 to 1350 Ω. Meanwhile, bioelectrochemical autotrophic sulfate (SO42-) reduction (over 27.6% reduction) through the syntrophic metabolism between hydrogen oxidation strains (genus Hydrogenophaga) and sulfate-reducing microbes (genera Dethiobacter, Desulfovibrio, and Desulfomicrobium) at the cathodic region was observed. More significantly, the microbial-derived chromophoric humic substances were found to act as electron shuttles at the cathodic region, which might facilitate the process of bioelectrochemical SO42- reduction. Overall, this study provided valuable insights into the potential application of bioelectrochemical-integrated biofilter for simultaneous reduction of NOM and SO42- treating reclaimed water.


Assuntos
Sulfatos , Purificação da Água , Oxirredução , Processos Autotróficos , Purificação da Água/métodos , Substâncias Húmicas/análise
8.
Environ Sci Technol ; 58(2): 1164-1176, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38164759

RESUMO

Terrestrial dissolved organic matter (DOM) is critical to global carbon and nutrient cycling, climate change, and human health. However, how the spatial and compositional differences of soil DOM affect its dynamics and fate in water during the carbon cycle is largely unclear. Herein, the biodegradation of DOM from 14 spatially distributed grassland soils in China with diverse organic composition was investigated by 165 days of incubation experiments. The results showed that although the high humified fraction (high-HS) regions were featured by high humic-like fractions of 4-25 kDa molecular weight, especially the abundant condensed aromatics and tannins, they unexpectedly displayed greater DOM degradation during 45-165 days. In contrast, the unique proteinaceous and 25-100 kDa fractions enriched in the low humified fraction (low-HS) regions were drastically depleted and improved the decay of bulk DOM but only during 0-45 days. Together, DOM from the high-HS regions would cause lower CO2 outgassing to the atmosphere but higher organic loads for drinking water production in the short term than that from the low-HS regions. However, this would be reversed for the two regions during the long-term transformation processes. These findings highlight the importance of spatial and temporal variability of DOM biogeochemistry to mitigate the negative impacts of grassland soil DOM on climate, waters, and humans.


Assuntos
Matéria Orgânica Dissolvida , Solo , Humanos , Pradaria , Carbono , Água , China
9.
Water Res ; 249: 120914, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38007899

RESUMO

The fouling of seawater reverse osmosis (SWRO) membranes remains a persistent challenge in desalination. Previous research has focused mainly on fouling separately; however, organic, inorganic, and biofouling can coexist and influence each other. Hence, in-depth study of the spatiotemporal changes in actual combined fouling in full-scale seawater desalination will provide more effective information for fouling investigation and control. In this study, we monitored (i) the operational performance of a full-scale desalination plant for 7 years and (ii) the development and characterization of membrane and spacer fouling at different locations of spiral-wound membrane modules sampled after 2.5-, 3.5-, and 7-year operation. The findings showed that (i) operational performance indicators declined with time (normalized flux 40 % reduction, salt rejection 2 % in 7 years), with a limited effect of the 20-day cleaning frequency, (ii) fouling accumulation in the membrane module mainly occurred at the feed side of the lead module and the microbial community in these area exhibited the highest diversity, (iii) the dominant microbial OTUs belonged mainly to Proteobacteria (43-70 %), followed by Bacteroidetes (10-11 %), (iv) Phylogenetic molecular ecological networks and Spearman correlation analysis revealed that Chloroflexi (Anaerolineae) and Planctomycetes were keystone species in maintaining the community structure and biofilm maturation and significantly impacted the foulant content on the SWRO membrane, even with low abundance, and that (v) fouling accumulation was composed of polysaccharides, soluble microbial products, marine humic acid-like substances, and inorganic Ca/Fe/Mg/Si dominate the fouling layer of both the membrane and spacer. Overall, variation partitioning analysis quantitatively describes the increasing contribution of biofouling over time. Ultimately, the organic‒inorganic-biofouling interaction (70 %) significantly contributed to the overall fouling of the membrane after 7 years of operation. These results can be used to develop more targeted fouling control strategies to optimize SWRO desalination plant design and operation.


Assuntos
Incrustação Biológica , Purificação da Água , Filogenia , Membranas Artificiais , Purificação da Água/métodos , Osmose , Água do Mar/química
10.
Water Res ; 247: 120840, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37950954

RESUMO

The presence of manganese(II) in drinking water sources poses a significant treatment difficulty for water utilities, thus necessitating the development of effective removal strategies. Treatment by Fe(VI), a combined oxidant and coagulant, has been identified as a potential green solution; however, its effectiveness is hampered by natural organic matter (NOM), and this underlying mechanism is not fully understood. Here, we investigated the inhibitory effect of three different types of NOM, representing terrestrial, aquatic, and microbial origins, on Mn(II) removal and floc growth during Fe(VI) coagulation. Results revealed that Fe(VI) coagulation effectively removes Mn(II), but NOM could inhibit its effectiveness by competing in oxidation reactions, forming NOM-Fe complexes, and altering floc aggregation. Humic acid was found to exhibit the strongest inhibition due to its unsaturated heterocyclic species that strongly bond to flocs and react with Fe(VI). For the first time, this study has presented a comprehensive elucidation of the atomic-level structure of Fe(VI) hydrolysis products by employing Extended X-ray Absorption Fine Structure Spectroscopy (EXAFS). Results demonstrated that NOM strengthened single-corner and double-corner coordination between FeO6 octahedrons that were consumed by Mn(II), resulting in an increased contribution of γ-FeOOH in the core-shell structure (γ-FeOOH shell and γ-F2O3 core), thereby inhibiting coagulation effects. Furthermore, NOM impeded the formation of stable manganite, resulting in more low-valence Mn(III) being incorporated in the form of an unstable intermediate. These findings provide a deeper understanding of the complex interplay between Fe coagulants, heavy metal pollution, and NOM in water treatment and offer insight into the limitations of Fe(VI) in practical applications.


Assuntos
Manganês , Purificação da Água , Oxirredução , Manganês/química , Purificação da Água/métodos
11.
ACS Appl Mater Interfaces ; 15(43): 50116-50125, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37856676

RESUMO

Construction of the desired morphology and nanointerface to expose the active sites and modulate the electronic structure offers an effective approach to boosting urea splitting for energy-saving hydrogen generation. Herein, we fabricate a Ni/WO3 Mott-Schottky heterojunction electrocatalyst with a hedgehog-like structure supported on Ni foam toward alkaline urea splitting. Different Ni/WO3 morphologies, such as microspheres, hedgehog-like structures, octahedrons, and cubes, were obtained when various ratios of Ni/W feeds were used. The Mott-Schottky nanointerfaces between Ni and WO3 domains are visually confirmed by high-resolution transmission electron microscopy images, which also accelerated the charge transfer rate. Benefiting from the high electrochemically active surface area and enhanced charge transferability, the optimal Ni/WO3 electrode exhibits outstanding catalytic activity toward hydrogen generation with a low overpotential of 163 mV at 100 mA cm-2 in alkaline solution and reduced cell voltage of 1.67 V when coupled with urea oxidation reaction. Theoretical calculations reveal that the Ni sites in Ni/WO3 optimize the H adsorption energy (ΔGH*) with the |ΔGH*| value of 0.097 eV, much lower than that of Ni (0.35 eV) and WO3 (0.235 eV). This work demonstrates important guidance in designing an efficient electrocatalyst for urea splitting.

12.
Environ Sci Technol ; 57(33): 12489-12500, 2023 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-37551789

RESUMO

In situ Fe(III) coprecipitation from Fe2+ oxidation is a widespread phenomenon in natural environments and water treatment processes. Studies have shown the superiority of in situ Fe(III) (formed by in situ oxidation of a Fe(II) coagulant) over ex situ Fe(III) (using a Fe(III) coagulant directly) in coagulation, but the reasons remain unclear due to the uncertain nature of amorphous structures. Here, we utilized an in situ Fe(III) coagulation process, oxidizing the Fe(II) coagulant by potassium permanganate (KMnO4), to treat phosphate-containing surface water and analyzed differences between in situ and ex situ Fe(III) coagulation in phosphate removal, dissolved organic matter (DOM) removal, and floc growth. Compared to ex situ Fe(III), flocs formed by the natural oxidizing Fe2+ coagulant exhibited more effective phosphate removal. Furthermore, in situ Fe(III) formed through accelerated oxidation by KMnO4 demonstrated improved flocculation behavior and enhanced removal of specific types of DOM by forming a more stable structure while still maintaining effective phosphate removal. Fe K-edge extended X-ray absorption fine structure spectra (EXAFS) of the flocs explained their differences. A short-range ordered strengite-like structure (corner-linked PO4 tetrahedra to FeO6 octahedra) was the key to more effective phosphorus removal of in situ Fe(III) than ex situ Fe(III) and was well preserved when KMnO4 accelerated in situ Fe(III) formation. Conversely, KMnO4 significantly inhibited the edge and corner coordination between FeO6 octahedra and altered the floc-chain-forming behavior by accelerating hydrolysis, resulting in a more dispersed monomeric structure than ex situ Fe(III). This research provides an explanation for the superiority of in situ Fe(III) in phosphorus removal and highlights the importance of atomic-level structural differences between ex situ and in situ Fe(III) coprecipitates in water treatment.


Assuntos
Compostos Férricos , Purificação da Água , Compostos Férricos/química , Matéria Orgânica Dissolvida , Fosfatos , Oxirredução , Compostos Ferrosos/química , Fósforo , Purificação da Água/métodos
13.
Water Res ; 243: 120328, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37459797

RESUMO

Iron coagulants have been used extensively in drinking water treatment. This typically produces substantial quantities of insoluble iron hydrolysis products which interact with natural and anthropogenic organic substances during the coagulation process. Previous studies have shown that the removal of low molecular weight (MW) organics is relatively poor by coagulation, which leads to their presence during disinfection, with the formation of halogenated byproducts, and in treated water supplies as potentially biodegradable material. Currently, there is little knowledge about the changes that occur in the nature of coagulant flocs as they age with time and how such changes affect interactions with organic matter, especially low MW organics. To improve this deficiency, this study has investigated the variation of aged flocs obtained from two commonly used iron salts and their impact on representative organic contaminants, natural organic matter (NOM) and tetracycline antibiotic (TC), in a real surface water. It was found that aging resulted in increasing crystallization of the flocs, which can play a beneficial role in activating persulfate oxidant to remove the representative organics. Furthermore, acidification was also found to further improve the removal of low MW natural organics and tetracycline. In addition, the results showed that the low MW fractions of NOM (<1 K Dalton) were substantially removed by the aging flocs. These results are in marked contrast to the poor removal of low MW organic substances by conventional coagulation, with or without added oxidants, and show that aged flocs have a high potential of reuse for re-coagulation and activation of oxidants to reduce low MW organics, and enhance drinking water quality.


Assuntos
Água Potável , Purificação da Água , Peso Molecular , Cristalização , Floculação , Purificação da Água/métodos , Ferro , Tetraciclinas
14.
Environ Sci Technol ; 57(30): 11096-11107, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37467428

RESUMO

Denitrification-driven Fe(II) oxidation is an important microbial metabolism that connects iron and nitrogen cycling in the environment. The formation of Fe(III) minerals in the periplasmic space has a significant effect on microbial metabolism and electron transfer, but direct evidence of iron ions entering the periplasm and resulting in periplasmic mineral precipitation and electron conduction properties has yet to be conclusively determined. Here, we investigated the pathways and amounts of iron, with different valence states and morphologies, entering the periplasmic space of the denitrifier Pseudomonas sp. JM-7 (P. JM-7), and the possible effects on the electron transfer and the denitrifying ability. When consistently provided with Fe(II) ions (from siderite (FeCO3)), the dissolved Fe(II) ions entered the periplasmic space and were oxidized to Fe(III), leading to the formation of a 25 nm thick crystalline goethite crust, which functioned as a semiconductor, accelerating the transfer of electrons from the intracellular to the extracellular matrix. This consequently doubled the denitrification rate and increased the electron transport capacity by 4-30 times (0.015-0.04 µA). However, as the Fe(II) concentration further increased to above 4 mM, the Fe(II) ions tended to preferentially nucleate, oxidize, and crystallize on the outer surface of P. JM-7, leading to the formation of a densely crystallized goethite layer, which significantly slowed down the metabolism of P. JM-7. In contrast to the Fe(II) conditions, regardless of the initial concentration of Fe(III), it was challenging for Fe(III) ions to form goethite in the periplasmic space. This work has shed light on the likely effects of iron on environmental microorganisms, improved our understanding of globally significant iron and nitrogen geochemical cycles in water, and expanded our ability to study and control these important processes.


Assuntos
Compostos Férricos , Compostos de Ferro , Periplasma/metabolismo , Água , Desnitrificação , Compostos de Ferro/química , Compostos de Ferro/metabolismo , Minerais/química , Ferro/química , Oxirredução , Compostos Ferrosos/química , Compostos Ferrosos/metabolismo , Nitrogênio/metabolismo
15.
J Hazard Mater ; 457: 131736, 2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37295334

RESUMO

The biological slow filtration reactor (BSFR) process has been found to be moderately effective for the removal of refractory dissolved organic matter (DOM) in the treatment of reused water. In this study, bench scale experiments were conducted using a mixture of landscape water and concentrated landfill leachate as feed water, to compare a novel iron oxide (FexO)/FeNC modified activated carbon (FexO@AC) packed BSFR, with a conventional activated carbon packed BSFR (AC-BSFR), operated in parallel. The results showed that the FexO@AC packed BSFR had a refractory DOM removal rate of 90%, operated at a hydraulic retention time (HRT) of 10 h at room temperature for 30 weeks, while under the same conditions the removal by the AC-BSFR was only 70%. As a consequence, the treatment by the FexO@AC packed BSFR substantially reduced the formation potential of trihalomethanes, and to a less extent, haloacetic acids. The modification of FexO/FeNC media raised the conductivity and the oxygen reduction reaction (ORR) efficiency of the AC media to accelerate the anaerobic digestion by consuming the electrons that are generated by anaerobic digestion itself, which lead to the marked improvement in refractory DOM removal.

16.
Water Res ; 240: 120089, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37216786

RESUMO

Drinking water supply in rural areas remains a substantial challenge due to complex natural, technical and economic conditions. To provide safe and affordable drinking water to all, as targeted in the UN Sustainable Development Goals (2030 Agenda), low-cost, efficient water treatment processes suitable for rural areas need to be developed. In this study, a bubbleless aeration BAC (termed ABAC) process is proposed and evaluated, involving the incorporation of a hollow fiber membrane (HFM) assembly within a slow-rate BAC filter, to provide dissolved oxygen (DO) throughout the BAC filter and an increased DOM removal efficiency. The results showed that after a 210-day period of operation, the ABAC increased the DOC removal by 54%, and decreased the disinfection byproduct formation potential (DBPFP) by 41%, compared to a comparable BAC filter without aeration (termed NBAC). The elevated DO (> 4 mg/L) not only reduced secreted extracellular polymer, but also modified the microbial community with a stronger degradation ability. The HFM-based aeration showed comparable performance to 3 mg/L pre-ozonation, and the DOC removal efficiency was four times greater than that of a conventional coagulation process. The proposed ABAC treatment, with its various advantages (e.g., high stability, avoidance of chemicals, ease of operation and maintenance), is well-suited to be integrated as a prefabricated device, for decentralized drinking water systems in rural areas.


Assuntos
Água Potável , Poluentes Químicos da Água , Purificação da Água , Carvão Vegetal , Poluentes Químicos da Água/análise , Purificação da Água/métodos , Desinfecção/métodos , Oxigênio
17.
Water Res ; 236: 119942, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37031529

RESUMO

Hydrophobic-modified flocculants have demonstrated considerable promise in the removal of emerging contaminants by flocculation. However, there is a lack of information about the impacts of dosing such flocculants on the performance of subsequent treatment unit(s) in the overall water treatment process. In this work, inspired by the ubiquitous protein folding phenomenon, an innovative approach using an elevated membrane cleaning temperature as the means to induce residual hydrophobic-modified chitosan flocculant (TRC), after flocculation-sedimentation, to reduce membrane fouling in a subsequent ultrafiltration was proposed; this was evaluated in a continuous flocculation-sedimentation-ultrafiltration (FSUF) process treating samples of the Yangtze River. The hydrophobic chains of TRC had similar temperature-dependent hydrophobicity to those of natural proteins. In the 40-day operation of the FSUF system with combined dosing of alum and TRC, a moderately elevated cleaning water temperature (45 °C) of both backwash with air-bubbling and soaking with sponge-scrubbing cleaning, significantly reduced reversible and irreversible fouling resistance by 49.8%∼61.3% and 73.9%∼83.3%, respectively, compared to the system using cleaning water at 25 °C. Material flow analysis, statistical analysis, instrumental characterizations, and computational simulations, showed that the enhanced fouling mitigation originated from three factors: the reduced contaminant accumulation onto membranes, the strengthened membrane-surface-modification role of TRC, and the weakened structure of the fouling material containing TRC, at the elevated cleaning temperature. Other measures of the performance, these being water purification, membrane stability and economic aspects, also confirmed the potential and feasibility of the proposed approach. This work has provided new insights into the role of hydrophobic-modified flocculants in membrane fouling control, in addition to emerging contaminant removal, in a FSUF surface water treatment process.


Assuntos
Membranas Artificiais , Purificação da Água , Floculação , Temperatura , Ultrafiltração , Interações Hidrofóbicas e Hidrofílicas , Dobramento de Proteína
18.
Environ Sci Technol ; 57(11): 4543-4555, 2023 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-36877961

RESUMO

The biodegradation in the middle and downstream of slow-rate biological activated carbon (BAC) is limited by insufficient dissolved oxygen (DO) concentrations. In this study, a bubbleless aerated BAC (termed ABAC) process was developed by installing a hollow fiber membrane (HFM) module within a BAC filter to continuously provide aeration throughout the BAC system. The BAC filter without an HFM was termed NBAC. The laboratory-scale ABAC and NBAC systems operated continuously for 426 days using secondary sewage effluent as an influent. The DO concentrations for NBAC and ABAC were 0.78 ± 0.27 and 4.31 ± 0.44 mg/L, respectively, with the latter providing the ABAC with greater electron acceptors for biodegradation and a microbial community with better biodegradation and metabolism capacity. The biofilms in ABAC secreted 47.3% less EPS and exhibited greater electron transfer capacity than those in NBAC, resulting in enhanced contaminant degradation efficiency and long-term stability. The extra organic matter removed by ABAC included refractory substances with a low elemental ratio of oxygen to carbon (O/C) and a high elemental ratio of hydrogen to carbon (H/C). The proposed ABAC filter provides a valuable, practical example of how to modify the BAC technology to shape the microbial community, and its activity, by optimizing the ambient atmosphere.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Filtração/métodos , Carvão Vegetal , Esgotos , Biodegradação Ambiental , Biofilmes , Purificação da Água/métodos , Poluentes Químicos da Água/análise
19.
Sci Total Environ ; 876: 162695, 2023 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-36898544

RESUMO

This study investigated the influence of pH (4-10) on the treatment of water-extractable organic matter (WEOM), and the associated disinfection by-products (DBPs) formation potential (FP), during the pre-ozonation/nanofiltration treatment process. At alkaline pH (9-10), a rapid decline in water flux (> 50 %) and higher membrane rejection was observed, as a consequence of the increased electrostatic repulsion forces between the membrane surface and organic species. Parallel factor analysis (PARAFAC) modeling and size exclusion chromatography (SEC) provides detailed insights into the WEOM compositional behavior at different pH levels. Ozonation at higher pH significantly reduced the apparent molecular weight (MW) of WEOM in the 4000-7000 Da range by transforming the large MW (humic-like) substances into small hydrophilic fractions. Fluorescence components C1 (humic-like) and C2 (fulvic-like) exhibited a predominant increase/decrease in concentration for all pH conditions during pre-ozonation and nanofiltration treatment process, however, the C3 (protein-like) component was found highly associated with the reversible and irreversible membrane foulants. The ratio C1/C2 provided a strong correlation with the formation of total trihalomethanes (THMs) (R2 = 0.9277) and total haloacetic acids (HAAs) (R2 = 0.5796). The formation potential of THMs increased, and HAAs decreased, with the increase of feed water pH. Ozonation markedly reduced the formation of THMs by up to 40 % at higher pH levels, but increased the formation of brominated-HAAs by shifting the formation potential of DBPs towards brominated precursors.

20.
J Hazard Mater ; 444(Pt A): 130327, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36434919

RESUMO

The electrochemical chlorination of urea to CO2 and N2 end-products, via active-chlorine-mediated oxidation under nearly neutral conditions, is an effective treatment for medium-concentrated urea-containing wastewater. Herein, we design a novel flow reactor integrated with three-dimensional hierarchically porous Ru/RuO2 architectures anchored on a Ti mesh. The hierarchically macroporous electrode can create sufficient exposure of catalytically active sites and facilitate the microscopic mass transport and diffusion inside the active layer, thereby contributing to the increased removal efficiency of urea-N and ammonia-N. The combined results of electrochemical measurements, UV-visible spectrometry and in situ Raman spectrometry, show that the OCl- species produced by chlorine evolution reaction (CER) are the main active constituents for removing urea-N. Theoretical calculations reveal thLTWAat the Ru/RuO2 possesses a moderate Cl binding strength, lower theoretical overpotentials of CER and a higher conductivity, compared with pure RuO2. On this basis, we assemble a circular flow reactor with the hierarchically porous electrodes in a two-electrode system to obtain an enhanced microfluidic process, which during 9 days of uninterrupted operation, at a high electrolysis current of 500 mA, achieve a total nitrogen removal of 92.6% and an energy consumption of 7.94 kWh kg-1 N, demonstrating the promising application of the novel process.


Assuntos
Amônia , Cloro , Ureia , Porosidade , Halogênios , Cloretos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...