Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
Cell Rep ; 43(5): 114127, 2024 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-38652660

RESUMO

Ebola virus (EBOV), a major global health concern, causes severe, often fatal EBOV disease (EVD) in humans. Host genetic variation plays a critical role, yet the identity of host susceptibility loci in mammals remains unknown. Using genetic reference populations, we generate an F2 mapping cohort to identify host susceptibility loci that regulate EVD. While disease-resistant mice display minimal pathogenesis, susceptible mice display severe liver pathology consistent with EVD-like disease and transcriptional signatures associated with inflammatory and liver metabolic processes. A significant quantitative trait locus (QTL) for virus RNA load in blood is identified in chromosome (chr)8, and a severe clinical disease and mortality QTL is mapped to chr7, which includes the Trim5 locus. Using knockout mice, we validate the Trim5 locus as one potential driver of liver failure and mortality after infection. The identification of susceptibility loci provides insight into molecular genetic mechanisms regulating EVD progression and severity, potentially informing therapeutics and vaccination strategies.

2.
J Virol ; 98(5): e0190323, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38593045

RESUMO

We developed a novel class of peptidomimetic inhibitors targeting several host cell human serine proteases, including transmembrane protease serine 2 (TMPRSS2), matriptase, and hepsin. TMPRSS2 is a membrane-associated protease that is highly expressed in the upper and lower respiratory tracts and is utilized by SARS-CoV-2 and other viruses to proteolytically process their glycoproteins, enabling host cell entry, replication, and dissemination of new virus particles. We have previously shown that compound MM3122 exhibited subnanomolar potency against all three proteases and displayed potent antiviral effects against SARS-CoV-2 in a cell viability assay. Herein, we demonstrate that MM3122 potently inhibits viral replication in human lung epithelial cells and is also effective against the EG.5.1 variant of SARS-CoV-2. Furthermore, we evaluated MM3122 in a mouse model of COVID-19 and demonstrated that MM3122 administered intraperitoneally (IP) before (prophylactic) or after (therapeutic) SARS-CoV-2 infection had significant protective effects against weight loss and lung congestion and reduced pathology. Amelioration of COVID-19 disease was associated with a reduction in proinflammatory cytokine and chemokine production after SARS-CoV-2 infection. Prophylactic, but not therapeutic, administration of MM3122 also reduced virus titers in the lungs of SARS-CoV-2-infected mice. Therefore, MM3122 is a promising lead candidate small-molecule drug for the treatment and prevention of infections caused by SARS-CoV-2 and other coronaviruses. IMPORTANCE: SARS-CoV-2 and other emerging RNA coronaviruses are a present and future threat in causing widespread endemic and pandemic infection and disease. In this paper, we have shown that the novel host cell protease inhibitor, MM3122, blocks SARS-CoV-2 viral replication and is efficacious as both a prophylactic and a therapeutic drug for the treatment of COVID-19 given intraperitoneally in mice. Targeting host proteins and pathways in antiviral therapy is an underexplored area of research, but this approach promises to avoid drug resistance by the virus, which is common in current antiviral treatments.


Assuntos
Antivirais , Tratamento Farmacológico da COVID-19 , COVID-19 , SARS-CoV-2 , Serina Endopeptidases , Inibidores de Serina Proteinase , Replicação Viral , Animais , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/fisiologia , Humanos , Camundongos , Replicação Viral/efeitos dos fármacos , COVID-19/virologia , Inibidores de Serina Proteinase/farmacologia , Inibidores de Serina Proteinase/uso terapêutico , Antivirais/farmacologia , Serina Endopeptidases/metabolismo , Pulmão/virologia , Pulmão/patologia , Pulmão/efeitos dos fármacos , Modelos Animais de Doenças , Chlorocebus aethiops , Células Vero , Feminino , Peptidomiméticos/farmacologia
3.
Virus Res ; 344: 199357, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38508400

RESUMO

Coronavirus (CoV) cause considerable morbidity and mortality in humans and other mammals, as evidenced by the emergence of Severe Acute Respiratory CoV (SARS-CoV) in 2003, Middle East Respiratory CoV (MERS-CoV) in 2012, and SARS-CoV-2 in 2019. Although poorly characterized, natural genetic variation in human and other mammals modulate virus pathogenesis, as reflected by the spectrum of clinical outcomes ranging from asymptomatic infections to lethal disease. Using multiple human epidemic and zoonotic Sarbecoviruses, coupled with murine Collaborative Cross genetic reference populations, we identify several dozen quantitative trait loci that regulate SARS-like group-2B CoV pathogenesis and replication. Under a Chr4 QTL, we deleted a candidate interferon stimulated gene, Trim14 which resulted in enhanced SARS-CoV titers and clinical disease, suggesting an antiviral role during infection. Importantly, about 60 % of the murine QTL encode susceptibility genes identified as priority candidates from human genome-wide association studies (GWAS) studies after SARS-CoV-2 infection, suggesting that similar selective forces have targeted analogous genes and pathways to regulate Sarbecovirus disease across diverse mammalian hosts. These studies provide an experimental platform in rodents to investigate the molecular-genetic mechanisms by which potential cross mammalian susceptibility loci and genes regulate type-specific and cross-SARS-like group 2B CoV replication, immunity, and pathogenesis in rodent models. Our study also provides a paradigm for identifying susceptibility loci for other highly heterogeneous and virulent viruses that sporadically emerge from zoonotic reservoirs to plague human and animal populations.


Assuntos
Locos de Características Quantitativas , Animais , Humanos , Camundongos , SARS-CoV-2/genética , Replicação Viral , Estudo de Associação Genômica Ampla , COVID-19/virologia , Proteínas com Motivo Tripartido/genética , Infecções por Coronavirus/virologia , Infecções por Coronavirus/genética , Modelos Animais de Doenças
4.
bioRxiv ; 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38405752

RESUMO

We have developed a novel class of peptidomimetic inhibitors targeting several host cell human serine proteases including transmembrane protease serine 2 (TMPRSS2), matriptase and hepsin. TMPRSS2 is a membrane associated protease which is highly expressed in the upper and lower respiratory tract and is utilized by SARS-CoV-2 and other viruses to proteolytically process their glycoproteins, enabling host cell receptor binding, entry, replication, and dissemination of new virion particles. We have previously shown that compound MM3122 exhibited sub nanomolar potency against all three proteases and displayed potent antiviral effects against SARS-CoV-2 in a cell-viability assay. Herein, we demonstrate that MM3122 potently inhibits viral replication in human lung epithelial cells and is also effective against the EG.5.1 variant of SARS-CoV-2. Further, we have evaluated MM3122 in a mouse model of COVID-19 and have demonstrated that MM3122 administered intraperitoneally (IP) before (prophylactic) or after (therapeutic) SARS-CoV-2 infection had significant protective effects against weight loss and lung congestion, and reduced pathology. Amelioration of COVID-19 disease was associated with a reduction in pro-inflammatory cytokines and chemokines production after SARS-CoV-2 infection. Prophylactic, but not therapeutic, administration of MM3122 also reduced virus titers in the lungs of SARS-CoV-2 infected mice. Therefore, MM3122 is a promising lead candidate small molecule drug for the treatment and prevention of infections caused by SARS-CoV-2 and other coronaviruses. IMPORTANCE: SARS-CoV-2 and other emerging RNA coronaviruses are a present and future threat in causing widespread endemic and pandemic infection and disease. In this paper, we have shown that the novel host-cell protease inhibitor, MM3122, blocks SARS-CoV-2 viral replication and is efficacious as both a prophylactic and therapeutic drug for the treatment of COVID-19 in mice. Targeting host proteins and pathways in antiviral therapy is an underexplored area of research but this approach promises to avoid drug resistance by the virus, which is common in current antiviral treatments.

5.
iScience ; 26(6): 106780, 2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37193127

RESUMO

Among all RNA viruses, coronavirus RNA transcription is the most complex and involves a process termed "discontinuous transcription" that results in the production of a set of 3'-nested, co-terminal genomic and subgenomic RNAs during infection. While the expression of the classic canonical set of subgenomic RNAs depends on the recognition of a 6- to 7-nt transcription regulatory core sequence (TRS), here, we use deep sequence and metagenomics analysis strategies and show that the coronavirus transcriptome is even more vast and more complex than previously appreciated and involves the production of leader-containing transcripts that have canonical and noncanonical leader-body junctions. Moreover, by ribosome protection and proteomics analyses, we show that both positive- and negative-sense transcripts are translationally active. The data support the hypothesis that the coronavirus proteome is much vaster than previously noted in the literature.

6.
J Med Chem ; 66(8): 5802-5819, 2023 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-37040439

RESUMO

Early antiviral treatments, including intravenous remdesivir (RDV), reduce hospitalization and severe disease caused by COVID-19. An orally bioavailable RDV analog may facilitate earlier treatment of non-hospitalized COVID-19 patients. Here we describe the synthesis and evaluation of alkyl glyceryl ether phosphodiesters of GS-441524 (RVn), lysophospholipid analogs which allow for oral bioavailability and stability in plasma. Oral treatment of SARS-CoV-2-infected BALB/c mice with 1-O-octadecyl-2-O-benzyl-sn-glyceryl-3-phospho-RVn (60 mg/kg orally, once daily for 5 days starting 12h after infection) reduced lung viral load by 1.5 log10 units versus vehicle at day 2 and to below the limit of detection at day 5. Structure/activity evaluation of additional analogs that have hydrophobic ethers at the sn-2 of glycerol revealed improved in vitro antiviral activity by introduction of a 3-fluoro-4-methoxy-substituted benzyl or a 3- or 4-cyano-substituted benzyl. Collectively, our data support the development of RVn phospholipid prodrugs as oral antiviral agents for prevention and treatment of SARS-CoV-2 infections.


Assuntos
Antivirais , COVID-19 , Animais , Camundongos , SARS-CoV-2 , Fosfolipídeos
7.
Nat Commun ; 14(1): 1371, 2023 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-36914616

RESUMO

The four dengue virus serotypes co-circulate globally and cause significant human disease. Dengue vaccine development is challenging because some virus-specific antibodies are protective, while others are implicated in enhanced viral replication and more severe disease. Current dengue tetravalent vaccines contain four live attenuated serotypes formulated to theoretically induce balanced protective immunity. Among the number of vaccine candidates in clinical trials, only Dengvaxia is licensed for use in DENV seropositive individuals. To simplify live-virus vaccine design, we identify co-evolutionary constraints inherent in flavivirus virion assembly and design chimeric viruses to replace domain II (EDII) of the DENV2 envelope (E) glycoprotein with EDII from DENV4. The chimeric DENV2/4EDII virus replicates efficiently in vitro and in vivo. In male macaques, a single inoculation of DENV2/4EDII induces type-specific neutralizing antibodies to both DENV2 and DENV4, thereby providing a strategy to simplify DENV vaccine design by utilizing a single bivalent E glycoprotein immunogen for two DENV serotypes.


Assuntos
Vírus da Dengue , Dengue , Masculino , Humanos , Vírus da Dengue/genética , Anticorpos Antivirais , Sorogrupo , Proteínas do Envelope Viral/genética , Anticorpos Neutralizantes
8.
mBio ; 13(4): e0145422, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-35862771

RESUMO

Infectious diseases have shaped the human population genetic structure, and genetic variation influences the susceptibility to many viral diseases. However, a variety of challenges have made the implementation of traditional human Genome-wide Association Studies (GWAS) approaches to study these infectious outcomes challenging. In contrast, mouse models of infectious diseases provide an experimental control and precision, which facilitates analyses and mechanistic studies of the role of genetic variation on infection. Here we use a genetic mapping cross between two distinct Collaborative Cross mouse strains with respect to severe acute respiratory syndrome coronavirus (SARS-CoV) disease outcomes. We find several loci control differential disease outcome for a variety of traits in the context of SARS-CoV infection. Importantly, we identify a locus on mouse chromosome 9 that shows conserved synteny with a human GWAS locus for SARS-CoV-2 severe disease. We follow-up and confirm a role for this locus, and identify two candidate genes, CCR9 and CXCR6, that both play a key role in regulating the severity of SARS-CoV, SARS-CoV-2, and a distantly related bat sarbecovirus disease outcomes. As such we provide a template for using experimental mouse crosses to identify and characterize multitrait loci that regulate pathogenic infectious outcomes across species. IMPORTANCE Host genetic variation is an important determinant that predicts disease outcomes following infection. In the setting of highly pathogenic coronavirus infections genetic determinants underlying host susceptibility and mortality remain unclear. To elucidate the role of host genetic variation on sarbecovirus pathogenesis and disease outcomes, we utilized the Collaborative Cross (CC) mouse genetic reference population as a model to identify susceptibility alleles to SARS-CoV and SARS-CoV-2 infections. Our findings reveal that a multitrait loci found in chromosome 9 is an important regulator of sarbecovirus pathogenesis in mice. Within this locus, we identified and validated CCR9 and CXCR6 as important regulators of host disease outcomes. Specifically, both CCR9 and CXCR6 are protective against severe SARS-CoV, SARS-CoV-2, and SARS-related HKU3 virus disease in mice. This chromosome 9 multitrait locus may be important to help identify genes that regulate coronavirus disease outcomes in humans.


Assuntos
COVID-19 , Doenças Transmissíveis , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave , Viroses , Animais , Camundongos de Cruzamento Colaborativo , Estudo de Associação Genômica Ampla , Humanos , Camundongos , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/genética , SARS-CoV-2/genética
9.
bioRxiv ; 2022 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-35677067

RESUMO

Infectious diseases have shaped the human population genetic structure, and genetic variation influences the susceptibility to many viral diseases. However, a variety of challenges have made the implementation of traditional human Genome-wide Association Studies (GWAS) approaches to study these infectious outcomes challenging. In contrast, mouse models of infectious diseases provide an experimental control and precision, which facilitates analyses and mechanistic studies of the role of genetic variation on infection. Here we use a genetic mapping cross between two distinct Collaborative Cross mouse strains with respect to SARS-CoV disease outcomes. We find several loci control differential disease outcome for a variety of traits in the context of SARS-CoV infection. Importantly, we identify a locus on mouse Chromosome 9 that shows conserved synteny with a human GWAS locus for SARS-CoV-2 severe disease. We follow-up and confirm a role for this locus, and identify two candidate genes, CCR9 and CXCR6 that both play a key role in regulating the severity of SARS-CoV, SARS-CoV-2 and a distantly related bat sarbecovirus disease outcomes. As such we provide a template for using experimental mouse crosses to identify and characterize multitrait loci that regulate pathogenic infectious outcomes across species.

10.
bioRxiv ; 2021 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-34013261

RESUMO

Sarbecovirus (CoV) infections, including Severe Acute Respiratory CoV (SARS-CoV) and SARS-CoV-2, are considerable human threats. Human GWAS studies have recently identified loci associated with variation in SARS-CoV-2 susceptibility. However, genetically tractable models that reproduce human CoV disease outcomes are needed to mechanistically evaluate genetic determinants of CoV susceptibility. We used the Collaborative Cross (CC) and human GWAS datasets to elucidate host susceptibility loci that regulate CoV infections and to identify host quantitative trait loci that modulate severe CoV and pan-CoV disease outcomes including a major disease regulating loci including CCR9. CCR9 ablation resulted in enhanced titer, weight loss, respiratory dysfunction, mortality, and inflammation, providing mechanistic support in mitigating protection from severe SARS-CoV-2 pathogenesis across species. This study represents a comprehensive analysis of susceptibility loci for an entire genus of human pathogens conducted, identifies a large collection of susceptibility loci and candidate genes that regulate multiple aspects type-specific and cross-CoV pathogenesis, and also validates the paradigm of using the CC platform to identify common cross-species susceptibility loci and genes for newly emerging and pre-epidemic viruses.

11.
PLoS Pathog ; 17(1): e1009033, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33411764

RESUMO

The p53 transcription factor plays a key role both in cancer and in the cell-intrinsic response to infections. The ORFEOME project hypothesized that novel p53-virus interactions reside in hitherto uncharacterized, unknown, or hypothetical open reading frames (orfs) of human viruses. Hence, 172 orfs of unknown function from the emerging viruses SARS-Coronavirus, MERS-Coronavirus, influenza, Ebola, Zika (ZIKV), Chikungunya and Kaposi Sarcoma-associated herpesvirus (KSHV) were de novo synthesized, validated and tested in a functional screen of p53 signaling. This screen revealed novel mechanisms of p53 virus interactions and two viral proteins KSHV orf10 and ZIKV NS2A binding to p53. Originally identified as the target of small DNA tumor viruses, these experiments reinforce the notion that all viruses, including RNA viruses, interfere with p53 functions. These results validate this resource for analogous systems biology approaches to identify functional properties of uncharacterized viral proteins, long non-coding RNAs and micro RNAs.


Assuntos
Doenças Transmissíveis Emergentes/virologia , Vírus de RNA/metabolismo , Transdução de Sinais/genética , Proteína Supressora de Tumor p53/metabolismo , Vírus Chikungunya/genética , Vírus Chikungunya/metabolismo , Coronavirus/genética , Coronavirus/metabolismo , Ebolavirus/genética , Ebolavirus/metabolismo , Herpesvirus Humano 8/genética , Herpesvirus Humano 8/metabolismo , Humanos , Vírus da Influenza A/genética , Vírus da Influenza A/metabolismo , Fases de Leitura Aberta , Vírus de RNA/genética , Proteína Supressora de Tumor p53/genética , Proteínas não Estruturais Virais/metabolismo , Zika virus/genética , Zika virus/metabolismo
12.
Proc Natl Acad Sci U S A ; 117(43): 26915-26925, 2020 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-33046644

RESUMO

Zoonotic coronaviruses represent an ongoing threat, yet the myriads of circulating animal viruses complicate the identification of higher-risk isolates that threaten human health. Swine acute diarrhea syndrome coronavirus (SADS-CoV) is a newly discovered, highly pathogenic virus that likely evolved from closely related HKU2 bat coronaviruses, circulating in Rhinolophus spp. bats in China and elsewhere. As coronaviruses cause severe economic losses in the pork industry and swine are key intermediate hosts of human disease outbreaks, we synthetically resurrected a recombinant virus (rSADS-CoV) as well as a derivative encoding tomato red fluorescent protein (tRFP) in place of ORF3. rSADS-CoV replicated efficiently in a variety of continuous animal and primate cell lines, including human liver and rectal carcinoma cell lines. Of concern, rSADS-CoV also replicated efficiently in several different primary human lung cell types, as well as primary human intestinal cells. rSADS-CoV did not use human coronavirus ACE-2, DPP4, or CD13 receptors for docking and entry. Contemporary human donor sera neutralized the group I human coronavirus NL63, but not rSADS-CoV, suggesting limited human group I coronavirus cross protective herd immunity. Importantly, remdesivir, a broad-spectrum nucleoside analog that is effective against other group 1 and 2 coronaviruses, efficiently blocked rSADS-CoV replication in vitro. rSADS-CoV demonstrated little, if any, replicative capacity in either immune-competent or immunodeficient mice, indicating a critical need for improved animal models. Efficient growth in primary human lung and intestinal cells implicate SADS-CoV as a potential higher-risk emerging coronavirus pathogen that could negatively impact the global economy and human health.


Assuntos
Alphacoronavirus/fisiologia , Infecções por Coronavirus/virologia , Suscetibilidade a Doenças/virologia , Replicação Viral , Monofosfato de Adenosina/análogos & derivados , Monofosfato de Adenosina/farmacologia , Alanina/análogos & derivados , Alanina/farmacologia , Alphacoronavirus/genética , Alphacoronavirus/crescimento & desenvolvimento , Animais , Células Cultivadas , Chlorocebus aethiops , Infecções por Coronavirus/transmissão , Expressão Gênica , Especificidade de Hospedeiro , Humanos , Proteínas Luminescentes/genética , Camundongos , Células Vero , Replicação Viral/efeitos dos fármacos
13.
Viruses ; 12(9)2020 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-32899556

RESUMO

Human norovirus (HuNoV) is the leading cause of global infectious acute gastroenteritis, causing ~20% of reported diarrheal episodes. Typically, GII.4 strains cause 50-70% of yearly outbreaks, and pandemic waves of disease approximately every 2-7 years due to rapid evolution. Importantly, GII.4 dominance is occasionally challenged by the sudden emergence of other GII strains, most recently by GII.2 strains which peaked in 2016-2017, dramatically increasing from 1% to 20% of total HuNoV outbreaks. To determine if viral capsid evolution may account for the sudden rise in GII.2 outbreaks, Virus Like Particles (VLPs) of two 2016-2017 GII.2 strains were compared by antigenic and histo blood group antigen (HBGA) binding profiles to the prototypic 1976 GII.2 Snow Mountain Virus (SMV) strain. Despite >50 years of GII.2 strain persistence in human populations, limited sequence diversity and antigenic differences were identified between strains. However, capsid microvariation did affect HBGA binding patterns, with contemporary strains demonstrating decreased avidity for type A saliva. Furthermore, bile salts increased GII.2 VLP avidity for HBGAs, but did not alter antigenicity. These data indicate that large changes in antigenicity or receptor binding are unlikely to explain GII.2 emergence, in contrast to the pandemic GII.4 strains, and indicate that host factors such as waning or remodeling of serum or mucosal immunity likely contributed to the surge in GII.2 prevalence.


Assuntos
Bile/imunologia , Antígenos de Grupos Sanguíneos/imunologia , Infecções por Caliciviridae/imunologia , Proteínas do Capsídeo/genética , Norovirus/genética , Sequência de Aminoácidos , Variação Antigênica , Antígenos de Grupos Sanguíneos/genética , Infecções por Caliciviridae/genética , Infecções por Caliciviridae/virologia , Capsídeo/metabolismo , Proteínas do Capsídeo/metabolismo , Evolução Molecular , Interações Hospedeiro-Patógeno , Humanos , Mutação , Norovirus/metabolismo
15.
Cell Rep ; 32(3): 107940, 2020 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-32668216

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the novel viral disease COVID-19. With no approved therapies, this pandemic illustrates the urgent need for broad-spectrum antiviral countermeasures against SARS-CoV-2 and future emerging CoVs. We report that remdesivir (RDV) potently inhibits SARS-CoV-2 replication in human lung cells and primary human airway epithelial cultures (EC50 = 0.01 µM). Weaker activity is observed in Vero E6 cells (EC50 = 1.65 µM) because of their low capacity to metabolize RDV. To rapidly evaluate in vivo efficacy, we engineered a chimeric SARS-CoV encoding the viral target of RDV, the RNA-dependent RNA polymerase of SARS-CoV-2. In mice infected with the chimeric virus, therapeutic RDV administration diminishes lung viral load and improves pulmonary function compared with vehicle-treated animals. These data demonstrate that RDV is potently active against SARS-CoV-2 in vitro and in vivo, supporting its further clinical testing for treatment of COVID-19.

16.
bioRxiv ; 2020 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-32511392

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged in 2019 as the causative agent of the novel pandemic viral disease COVID-19. With no approved therapies, this pandemic illustrates the urgent need for safe, broad-spectrum antiviral countermeasures against SARS-CoV-2 and future emerging CoVs. We report that remdesivir (RDV), a monophosphoramidate prodrug of an adenosine analog, potently inhibits SARS-CoV-2 replication in human lung cells and primary human airway epithelial cultures (EC 50 = 0.01 µM). Weaker activity was observed in Vero E6 cells (EC 50 = 1.65 µM) due to their low capacity to metabolize RDV. To rapidly evaluate in vivo efficacy, we engineered a chimeric SARS-CoV encoding the viral target of RDV, the RNA-dependent RNA polymerase, of SARS-CoV-2. In mice infected with chimeric virus, therapeutic RDV administration diminished lung viral load and improved pulmonary function as compared to vehicle treated animals. These data provide evidence that RDV is potently active against SARS-CoV-2 in vitro and in vivo , supporting its further clinical testing for treatment of COVID-19.

17.
bioRxiv ; 2020 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-32587967

RESUMO

Coronaviruses, including SARS-CoV-2 the etiological agent of COVID-19 disease, have caused multiple epidemic and pandemic outbreaks in the past 20 years1-3. With no vaccines, and only recently developed antiviral therapeutics, we are ill equipped to handle coronavirus outbreaks4. A better understanding of the molecular mechanisms that regulate coronavirus replication and pathogenesis is needed to guide the development of new antiviral therapeutics and vaccines. RNA secondary structures play critical roles in multiple aspects of coronavirus replication, but the extent and conservation of RNA secondary structure across coronavirus genomes is unknown5. Here, we define highly structured RNA regions throughout the MERS-CoV, SARS-CoV, and SARS-CoV-2 genomes. We find that highly stable RNA structures are pervasive throughout coronavirus genomes, and are conserved between the SARS-like CoV. Our data suggests that selective pressure helps preserve RNA secondary structure in coronavirus genomes, suggesting that these structures may play important roles in virus replication and pathogenesis. Thus, disruption of conserved RNA secondary structures could be a novel strategy for the generation of attenuated SARS-CoV-2 vaccines for use against the current COVID-19 pandemic.

18.
Immunity ; 52(5): 734-736, 2020 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-32392464

RESUMO

The emergence and rapid global spread of SARS-CoV-2 mark the third such identification of a novel coronavirus capable of causing severe, potentially fatal disease in humans in the 21st century. As noted by Andersen et al. (Nature Medicine), the sequencing of proximal zoonotic ancestors to SARS-CoV-2 has aided in the identification of alleles that may contribute to the virus' virulence in humans.


Assuntos
Infecções por Coronavirus , Coronavirus , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave , Betacoronavirus , COVID-19 , Humanos , Pandemias , Pneumonia Viral , SARS-CoV-2
19.
Front Microbiol ; 11: 658, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32390971

RESUMO

Emerging coronaviruses (CoV) are constant global public health threats to society. Multiple ongoing clinical trials for vaccines and antivirals against CoVs showcase the availability of medical interventions to both prevent and treat the future emergence of highly pathogenic CoVs in human. However, given the diverse nature of CoVs and our close interactions with wild, domestic and companion animals, the next epidemic zoonotic CoV could resist the existing vaccines and antivirals developed, which are primarily focused on Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) and Middle East Respiratory Syndrome Coronavirus (MERS CoV). In late 2019, the novel CoV (SARS-CoV-2) emerged in Wuhan, China, causing global public health concern. In this review, we will summarize the key advancements of current vaccines and antivirals against SARS-CoV and MERS-CoV as well as discuss the challenge and opportunity in the current SARS-CoV-2 crisis. At the end, we advocate the development of a "plug-and-play" platform technologies that could allow quick manufacturing and administration of broad-spectrum countermeasures in an outbreak setting. We will discuss the potential of AAV-based gene therapy technology for in vivo therapeutic antibody delivery to combat SARS-CoV-2 outbreak and the future emergence of severe CoVs.

20.
Sci Transl Med ; 12(541)2020 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-32253226

RESUMO

Coronaviruses (CoVs) traffic frequently between species resulting in novel disease outbreaks, most recently exemplified by the newly emerged SARS-CoV-2, the causative agent of COVID-19. Here, we show that the ribonucleoside analog ß-d-N4-hydroxycytidine (NHC; EIDD-1931) has broad-spectrum antiviral activity against SARS-CoV-2, MERS-CoV, SARS-CoV, and related zoonotic group 2b or 2c bat-CoVs, as well as increased potency against a CoV bearing resistance mutations to the nucleoside analog inhibitor remdesivir. In mice infected with SARS-CoV or MERS-CoV, both prophylactic and therapeutic administration of EIDD-2801, an orally bioavailable NHC prodrug (ß-d-N4-hydroxycytidine-5'-isopropyl ester), improved pulmonary function and reduced virus titer and body weight loss. Decreased MERS-CoV yields in vitro and in vivo were associated with increased transition mutation frequency in viral, but not host cell RNA, supporting a mechanism of lethal mutagenesis in CoV. The potency of NHC/EIDD-2801 against multiple CoVs and oral bioavailability highlights its potential utility as an effective antiviral against SARS-CoV-2 and other future zoonotic CoVs.


Assuntos
Antivirais/administração & dosagem , Infecções por Coronavirus/tratamento farmacológico , Pneumonia Viral/tratamento farmacológico , Ribonucleosídeos/administração & dosagem , Replicação Viral/efeitos dos fármacos , Monofosfato de Adenosina/administração & dosagem , Monofosfato de Adenosina/análogos & derivados , Alanina/administração & dosagem , Alanina/análogos & derivados , Animais , Antibioticoprofilaxia , Betacoronavirus/fisiologia , COVID-19 , Linhagem Celular , Infecções por Coronavirus/patologia , Citidina/administração & dosagem , Citidina/análogos & derivados , Modelos Animais de Doenças , Farmacorresistência Viral , Humanos , Hidroxilaminas , Pulmão/patologia , Camundongos , Camundongos Endogâmicos C57BL , Coronavírus da Síndrome Respiratória do Oriente Médio/fisiologia , Modelos Moleculares , Mutação/efeitos dos fármacos , Pandemias , Pneumonia Viral/patologia , Cultura Primária de Células , RNA Viral , RNA Polimerase Dependente de RNA/química , RNA Polimerase Dependente de RNA/genética , Distribuição Aleatória , Sistema Respiratório/citologia , SARS-CoV-2
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...