Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Methods Protoc ; 7(2)2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38668139

RESUMO

The main causes of mortality in horses are the gastrointestinal pathologies associated with septic shock. Stem cells have shown, through systemic injection, a capacity to decrease inflammation and to regenerate injured tissue faster. Nevertheless, to achieve this rapid and total regeneration, systemic injections of 1 to 2 million cells per kilogram of body weight must be considered. Here, we demonstrate for the first time the feasibility and expansion capacity of equine muscle-derived mesenchymal stromal cells (mdMSCs) in a functionally closed, automated, perfusion-based, hollow-fiber bioreactor (HFBR) called the Quantum™ Cell Expansion System (Terumo Blood and Cell Technologies). This feature greatly increases the number of generated cells with a surface area of 1.7 m2. The expansion of mdMSCs is very efficient in this bioreactor. The maximum expansion generated twenty times more cells than the initial seeding in nine days. The best returns were observed with an optimal seeding between 10 and 25 million mdMSCs, using the Bull's eye loading method and with a run duration between 7 and 10 days. Moreover, all the generated cells kept their stem properties: the ability to adhere to plastic and to differentiate into chondroblasts, osteoblasts and adipocytes. They also showed the expression of CD-44 and CD-90 markers, with a positive rate above 93%, while CD-45 and MHCII were non-expressed, with a positive rate below 0.5%. By capitalizing on the scalability, automation and 3D culture capabilities of the Quantum™, it is possible to generate large quantities of high-quality equine mdMSCs for gastrointestinal disorders and other clinical applications.

2.
Antioxidants (Basel) ; 13(1)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38247504

RESUMO

There is a growing interest in the use of natural compounds to tackle inflammatory diseases and cancers. However, most of them face the bioavailability and solubility challenges to reaching cellular compartments and exert their potential biological effects. Polyphenols belong to that class of molecules, and numerous efforts have been made to improve and overcome these problems. Curcumin is widely studied for its antioxidant and anti-inflammatory properties as well as its use as an anticancer agent. However, its poor solubility and bioavailability are often a source of concern with disappointing or unexpected results in cellular models or in vivo, which limits the clinical use of curcumin as such. Beside nanoparticles and liposomes, cyclodextrins are one of the best candidates to improve the solubility of these molecules. We have used lysine and cyclodextrin to form a water-soluble curcumin complex, named NDS27, in which potential anti-inflammatory effects were demonstrated in cellular and in vivo models. Herein, we investigated for the first time its direct free radicals scavenging activity on DPPH/ABTS assays as well as on hydroxyl, superoxide anion, and peroxyl radical species. The ability of NDS27 to quench singlet oxygen, produced by rose bengal photosensitization, was studied, as was the inhibiting effect on the enzyme-catalyzed oxidation of the co-substrate, luminol analog (L012), using horseradish peroxidase (HRP)/hydrogen peroxide (H2O2) system. Finally, docking was performed to study the behavior of NDS27 in the active site of the peroxidase enzyme.

3.
Int J Mol Sci ; 24(2)2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36674546

RESUMO

We investigated the antioxidant potential of equine mesenchymal stem cells derived from muscle microbiopsies (mdMSCs), loaded by a water-soluble curcumin lysinate incorporated into hydroxypropyl-ß-cyclodextrin (NDS27). The cell loading was rapid and dependent on NDS27 dosage (14, 7, 3.5 and 1 µM). The immunomodulatory capacity of loaded mdMSCs was evaluated by ROS production, on active and total myeloperoxidase (MPO) degranulation and neutrophil extracellular trap (NET) formation after neutrophil stimulation. The intracellular protection of loaded cells was tested by an oxidative stress induced by cumene hydroperoxide. Results showed that 10 min of mdMSC loading with NDS27 did not affect their viability while reducing their metabolism. NDS27 loaded cells in presence of 14, 7 µM NDS27 inhibited more intensively the ROS production, the activity of the MPO released and bound to the NET after neutrophil stimulation. Furthermore, loaded cells powerfully inhibited intracellular ROS production induced by cumene as compared to control cells or cyclodextrin-loaded cells. Our results showed that the loading of mdMSCs with NDS27 significantly improved their antioxidant potential against the oxidative burst of neutrophil and protected them against intracellular ROS production. The improved antioxidant protective capacity of loaded mdMSCs could be applied to target inflammatory foci involving neutrophils.


Assuntos
Curcumina , Animais , Cavalos , Curcumina/farmacologia , Curcumina/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Ativação de Neutrófilo , Neutrófilos/metabolismo , Estresse Oxidativo , Músculos/metabolismo , Peroxidase/metabolismo
4.
Cells ; 10(12)2021 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-34943996

RESUMO

Mesenchymal stem cells (MSCs) are known to migrate to tissue injury sites to participate in immune modulation, tissue remodelling and wound healing, reducing tissue damage. Upon neutrophil activation, there is a release of myeloperoxidase (MPO), an oxidant enzyme. But little is known about the direct role of MSCs on MPO activity. The aim of this study was to investigate the effect of equine mesenchymal stem cells derived from muscle microinvasive biopsy (mdMSC) on the oxidant response of neutrophils and particularly on the activity of the myeloperoxidase released by stimulated equine neutrophils. After specific treatment (trypsin and washings in phosphate buffer saline), the mdMSCs were exposed to isolated neutrophils. The effect of the suspended mdMSCs was studied on the ROS production and the release of total and active MPO by stimulated neutrophils and specifically on the activity of MPO in a neutrophil-free model. Additionally, we developed a model combining adherent mdMSCs with neutrophils to study total and active MPO from the neutrophil extracellular trap (NET). Our results show that mdMSCs inhibited the ROS production, the activity of MPO released by stimulated neutrophils and the activity of MPO bound to the NET. Moreover, the co-incubation of mdMSCs directly with MPO results in a strong inhibition of the peroxidase activity of MPO, probably by affecting the active site of the enzyme. We confirm the strong potential of mdMSCs to lower the oxidant response of neutrophils. The novelty of our study is an evident inhibition of the activity of MPO by MSCs. The results indicated a new potential therapeutic approach of mdMSCs in the inhibition of MPO, which is considered as a pro-oxidant actor in numerous chronic and acute inflammatory pathologies.


Assuntos
Armadilhas Extracelulares/enzimologia , Células-Tronco Mesenquimais/metabolismo , Músculos/citologia , Peroxidase/metabolismo , Animais , Degranulação Celular , Cavalos , Neutrófilos/metabolismo , Ligação Proteica , Espécies Reativas de Oxigênio/metabolismo
5.
J Vis Exp ; (139)2018 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-30320737

RESUMO

Recurrent laryngeal neuropathy (RLN) commonly affects horses and is characterized by abnormal respiratory sounds and exercise intolerance. The recurrent laryngeal nerve shows lesions of demyelination. The benefit of applying stem cells to demyelinated nerves has been demonstrated in various animal models. The aim of the study was to test the feasibility and safety of a peri-neuronal injection of autologous muscle-derived mesenchymal stem cells to the left recurrent laryngeal nerve in healthy horses by using an electrical nerve stimulator. Muscle-derived stems cell are obtained from five healthy Standardbred horses by sampling 20 mg of muscle tissue with a semi-automatic 14 G biopsy needle from the triceps muscle. Movements of the larynx are monitored via upper-airway video endoscopy. The left recurrent laryngeal nerve is approached with an insulated nerve block needle. Nerve stimulation is applied, starting at 2 mA, and the successful abduction of the left arytenoid is monitored. The stimulation intensity is reduced progressively. When a loss of the motor response is observed at 0.5 mA, 107 autologous muscle-derived stem cells are injected. Two examiners, who are blinded to the time point, score the laryngeal function of the horses prior to the treatment and at day 1, day 7, and day 28 after the injection of the cells. In a sixth horse, 1 mL of 2% lidocaine is injected to further confirm the correct positioning of the needle. This leads to a temporary paralysis of the left arytenoid cartilage. This study proves that the recurrent laryngeal nerve can be approached with the help of an electrical nerve stimulator and that the electrical stimulation of the nerve is well tolerated by the horses. No modification of the laryngeal function was observed in any of the horses after the injection of the stem cells. Further studies should be conducted to describe the effects of a peri-neuronal injection of autologous muscle-derived mesenchymal stem cells to horses suffering from RLN.


Assuntos
Estimulação Elétrica/instrumentação , Injeções/veterinária , Nervo Laríngeo Recorrente/patologia , Transplante de Células-Tronco/veterinária , Animais , Estimulação Elétrica/métodos , Doenças dos Cavalos/patologia , Doenças dos Cavalos/fisiopatologia , Cavalos , Injeções/métodos , Laringe/fisiopatologia , Procedimentos Neurocirúrgicos/métodos , Procedimentos Neurocirúrgicos/veterinária , Nervo Laríngeo Recorrente/fisiopatologia , Transplante de Células-Tronco/métodos , Células-Tronco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...