Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Respirology ; 28(4): 366-372, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36336654

RESUMO

BACKGROUND AND OBJECTIVE: Identification of an exposure is integral to the diagnosis, management, and prognostication of chronic hypersensitivity pneumonitis (CHP). Standardized questionnaires may aid in the identification of exposures, however, there currently are no evidence-based patient-validated questionnaires available. Key qualifiers (including duration and frequency) which indicate exposure relevance are also poorly defined. This study assessed the use of a standardized CHP exposure questionnaire in the identification of exposures and diagnostic confidence of CHP. METHODS: People with a multi-disciplinary meeting (MDM) diagnosis from five Australian interstitial lung disease (ILD) expert centres who provided informed consent were included. Participants completed a previously developed standardized CHP Exposure Questionnaire. Responses were collected with the participant's MDM data, including diagnosis, diagnostic confidence, and clinician-elicited exposures. RESULTS: One hundred thirty participants (IPF = 58, CHP = 24, CTD-ILD = 17, unclassifiable = 19, other = 12) were included. In 33% of CHP participants, a standardized questionnaire elicited an exposure where the clinician did not. 63% of these had provisional low confidence CHP; and an exposure history would have increased the diagnostic confidence in these cases. Using the standardized questionnaire, 96% of CHP participants reporting any exposure, compared with 75% of non-HP ILD participants. CHP participants were 3.5 times more likely (p = 0.004) to report their symptoms improved on avoidance, and 2.3 times more likely (p = 0.018) to report daily frequent exposure, compared with non-HP ILDs. CONCLUSION: A standardized questionnaire which elicits exposure characteristics in addition to presence or absence of relevant exposures can increase the diagnostic confidence of CHP and reduce the proportion of antigen-indeterminate CHP.


Assuntos
Alveolite Alérgica Extrínseca , Doenças Pulmonares Intersticiais , Humanos , Doença Crônica , Austrália , Alveolite Alérgica Extrínseca/diagnóstico , Doenças Pulmonares Intersticiais/diagnóstico , Inquéritos e Questionários
2.
Eur Respir J ; 60(5)2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35798357

RESUMO

Idiopathic pulmonary fibrosis (IPF) is an interstitial lung disease associated with chronic inflammation and tissue remodelling leading to fibrosis, reduced pulmonary function, respiratory failure and death. Bleomycin (Blm)-induced lung fibrosis in mice replicates several clinical features of human IPF, including prominent lymphoid aggregates of predominantly B-cells that accumulate in the lung adjacent to areas of active fibrosis. We have shown previously a requirement for B-cells in the development of Blm-induced lung fibrosis in mice. To determine the therapeutic potential of inhibiting B-cell function in pulmonary fibrosis, we examined the effects of anti-CD20 B-cell ablation therapy to selectively remove mature B-cells from the immune system and inhibit Blm-induced lung fibrosis. Anti-CD20 B-cell ablation did not reduce fibrosis in this model; however, immune phenotyping of peripheral blood and lung resident cells revealed that anti-CD20-treated mice retained a high frequency of CD19+ CD138+ plasma cells. Interestingly, high levels of CD138+ cells were also identified in the lung tissue of patients with IPF, consistent with the mouse model. Treatment of mice with bortezomib, which depletes plasma cells, reduced the level of Blm-induced lung fibrosis, implicating plasma cells as important effector cells in the development and progression of pulmonary fibrosis.


Assuntos
Fibrose Pulmonar Idiopática , Doenças Pulmonares Intersticiais , Humanos , Camundongos , Animais , Bleomicina/farmacologia , Plasmócitos , Fibrose Pulmonar Idiopática/tratamento farmacológico , Pulmão/metabolismo , Doenças Pulmonares Intersticiais/induzido quimicamente
3.
Front Digit Health ; 4: 750226, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35211691

RESUMO

INTRODUCTION: To self-monitor asthma symptoms, existing methods (e.g. peak flow metre, smart spirometer) require special equipment and are not always used by the patients. Voice recording has the potential to generate surrogate measures of lung function and this study aims to apply machine learning approaches to predict lung function and severity of abnormal lung function from recorded voice for asthma patients. METHODS: A threshold-based mechanism was designed to separate speech and breathing from 323 recordings. Features extracted from these were combined with biological factors to predict lung function. Three predictive models were developed using Random Forest (RF), Support Vector Machine (SVM), and linear regression algorithms: (a) regression models to predict lung function, (b) multi-class classification models to predict severity of lung function abnormality, and (c) binary classification models to predict lung function abnormality. Training and test samples were separated (70%:30%, using balanced portioning), features were normalised, 10-fold cross-validation was used and model performances were evaluated on the test samples. RESULTS: The RF-based regression model performed better with the lowest root mean square error of 10·86. To predict severity of lung function impairment, the SVM-based model performed best in multi-class classification (accuracy = 73.20%), whereas the RF-based model performed best in binary classification models for predicting abnormal lung function (accuracy = 85%). CONCLUSION: Our machine learning approaches can predict lung function, from recorded voice files, better than published approaches. This technique could be used to develop future telehealth solutions including smartphone-based applications which have potential to aid decision making and self-monitoring in asthma.

4.
Eur Respir J ; 58(1)2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33303547

RESUMO

BACKGROUND: We assessed whether Toll-like receptor (TLR)2 activation boosts the innate immune response to rhinovirus infection, as a treatment strategy for virus-induced respiratory diseases. METHODS: We employed treatment with a novel TLR2 agonist (INNA-X) prior to rhinovirus infection in mice, and INNA-X treatment in differentiated human bronchial epithelial cells derived from asthmatic-donors. We assessed viral load, immune cell recruitment, cytokines, type I and III interferon (IFN) production, as well as the lung tissue and epithelial cell immune transcriptome. RESULTS: We show, in vivo, that a single INNA-X treatment induced innate immune priming characterised by low-level IFN-λ, Fas ligand, chemokine expression and airway lymphocyte recruitment. Treatment 7 days before infection significantly reduced lung viral load, increased IFN-ß/λ expression and inhibited neutrophilic inflammation. Corticosteroid treatment enhanced the anti-inflammatory effects of INNA-X. Treatment 1 day before infection increased expression of 190 lung tissue immune genes. This tissue gene expression signature was absent with INNA-X treatment 7 days before infection, suggesting an alternate mechanism, potentially via establishment of immune cell-mediated mucosal innate immunity. In vitro, INNA-X treatment induced a priming response defined by upregulated IFN-λ, chemokine and anti-microbial gene expression that preceded an accelerated response to infection enriched for nuclear factor (NF)-κB-regulated genes and reduced viral loads, even in epithelial cells derived from asthmatic donors with intrinsic delayed anti-viral immune response. CONCLUSION: Airway epithelial cell TLR2 activation induces prolonged innate immune priming, defined by early NF-κB activation, IFN-λ expression and lymphocyte recruitment. This response enhanced anti-viral innate immunity and reduced virus-induced airway inflammation.


Assuntos
Antivirais , Receptor 2 Toll-Like , Animais , Células Epiteliais , Humanos , Imunidade Inata , Pulmão , Camundongos
5.
Eur Respir Rev ; 29(157)2020 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-32759373

RESUMO

The lung is a mechanically active organ, but uncontrolled or excessive mechanical forces disrupt normal lung function and can contribute to the development of disease. In asthma, bronchoconstriction leads to airway narrowing and airway wall buckling. A growing body of evidence suggests that pathological mechanical forces induced by airway buckling alone can perpetuate disease processes in asthma. Here, we review the data obtained from a variety of experimental models, including in vitro, ex vivo and in vivo approaches, which have been used to study the impact of mechanical forces in asthma pathogenesis. We review the evidence showing that mechanical compression alters the biological and biophysical properties of the airway epithelium, including activation of the epidermal growth factor receptor pathway, overproduction of asthma-associated mediators, goblet cell hyperplasia, and a phase transition of epithelium from a static jammed phase to a mobile unjammed phase. We also define questions regarding the impact of mechanical forces on the pathology of asthma, with a focus on known triggers of asthma exacerbations such as viral infection.


Assuntos
Asma/etiologia , Asma/patologia , Receptores ErbB/fisiologia , Células Caliciformes/patologia , Humanos , Modelos Biológicos , Mucosa Respiratória/fisiopatologia , Estresse Mecânico
6.
Front Immunol ; 11: 974, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32499788

RESUMO

Respiratory viral infections, particularly those caused by rhinovirus, exacerbate chronic respiratory inflammatory diseases, such as asthma and chronic obstructive pulmonary disease (COPD). Airway epithelial cells are the primary site of rhinovirus replication and responsible of initiating the host immune response to infection. Numerous studies have reported that the anti-viral innate immune response (including type I and type III interferon) in asthma is less effective or deficient leading to the conclusion that epithelial innate immunity is a key determinant of disease severity during a rhinovirus induced exacerbation. However, deficient rhinovirus-induced epithelial interferon production in asthma has not always been observed. We hypothesized that disparate in vitro airway epithelial infection models using high multiplicity of infection (MOI) and lacking genome-wide, time course analyses have obscured the role of epithelial innate anti-viral immunity in asthma and COPD. To address this, we developed a low MOI rhinovirus model of differentiated primary epithelial cells obtained from healthy, asthma and COPD donors. Using genome-wide gene expression following infection, we demonstrated that gene expression patterns are similar across patient groups, but that the kinetics of induction are delayed in cells obtained from asthma and COPD donors. Rhinovirus-induced innate immune responses were defined by interferons (type-I, II, and III), interferon response factors (IRF1, IRF3, and IRF7), TLR signaling and NF-κB and STAT1 activation. Induced gene expression was evident at 24 h and peaked at 48 h post-infection in cells from healthy subjects. In contrast, in cells from donors with asthma or COPD induction was maximal at or beyond 72-96 h post-infection. Thus, we propose that propensity for viral exacerbations of asthma and COPD relate to delayed (rather than deficient) expression of epithelial cell innate anti-viral immune genes which in turns leads to a delayed and ultimately more inflammatory host immune response.


Assuntos
Asma/virologia , Células Epiteliais/imunologia , Células Epiteliais/virologia , Imunidade Inata , Doença Pulmonar Obstrutiva Crônica/virologia , Mucosa Respiratória/imunologia , Idoso , Asma/imunologia , Células Cultivadas , Feminino , Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Doença Pulmonar Obstrutiva Crônica/imunologia , Mucosa Respiratória/citologia , Mucosa Respiratória/virologia , Rhinovirus
7.
Am J Respir Cell Mol Biol ; 62(4): 513-523, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31922915

RESUMO

In asthma, goblet cell numbers are increased within the airway epithelium, perpetuating the production of mucus that is more difficult to clear and results in airway mucus plugging. Notch1, Notch2, or Notch3, or a combination of these has been shown to influence the differentiation of airway epithelial cells. How the expression of specific Notch isoforms differs in fully differentiated adult asthmatic epithelium and whether Notch influences mucin production after differentiation is currently unknown. We aimed to quantify different Notch isoforms in the airway epithelium of individuals with severe asthma and to examine the impact of Notch signaling on mucin MUC5AC. Human lung sections and primary bronchial epithelial cells from individuals with and without asthma were used in this study. Primary bronchial epithelial cells were differentiated at the air-liquid interface for 28 days. Notch isoform expression was analyzed by Taqman quantitative PCR. Immunohistochemistry was used to localize and quantify Notch isoforms in human airway sections. Notch signaling was inhibited in vitro using dibenzazepine or Notch3-specific siRNA, followed by analysis of MUC5AC. NOTCH3 was highly expressed in asthmatic airway epithelium compared with nonasthmatic epithelium. Dibenzazepine significantly reduced MUC5AC production in air-liquid interface cultures of primary bronchial epithelial cells concomitantly with suppression of NOTCH3 intracellular domain protein. Specific knockdown using NOTCH3 siRNA recapitulated the dibenzazepine-induced reduction in MUC5AC. We demonstrate that NOTCH3 is a regulator of MUC5AC production. Increased NOTCH3 signaling in the asthmatic airway epithelium may therefore be an underlying driver of excess MUC5AC production.


Assuntos
Asma/metabolismo , Brônquios/metabolismo , Células Epiteliais/metabolismo , Pulmão/metabolismo , Mucina-5AC/metabolismo , Receptor Notch3/metabolismo , Transdução de Sinais/fisiologia , Idoso , Diferenciação Celular/fisiologia , Células Cultivadas , Feminino , Células Caliciformes/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , RNA Interferente Pequeno/metabolismo , Mucosa Respiratória/metabolismo
8.
10.
Nat Commun ; 9(1): 2229, 2018 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-29884817

RESUMO

Inhaled corticosteroids (ICS) have limited efficacy in reducing chronic obstructive pulmonary disease (COPD) exacerbations and increase pneumonia risk, through unknown mechanisms. Rhinoviruses precipitate most exacerbations and increase susceptibility to secondary bacterial infections. Here, we show that the ICS fluticasone propionate (FP) impairs innate and acquired antiviral immune responses leading to delayed virus clearance and previously unrecognised adverse effects of enhanced mucus, impaired antimicrobial peptide secretion and increased pulmonary bacterial load during virus-induced exacerbations. Exogenous interferon-ß reverses these effects. FP suppression of interferon may occur through inhibition of TLR3- and RIG-I virus-sensing pathways. Mice deficient in the type I interferon-α/ß receptor (IFNAR1-/-) have suppressed antimicrobial peptide and enhanced mucin responses to rhinovirus infection. This study identifies type I interferon as a central regulator of antibacterial immunity and mucus production. Suppression of interferon by ICS during virus-induced COPD exacerbations likely mediates pneumonia risk and raises suggestion that inhaled interferon-ß therapy may protect.


Assuntos
Corticosteroides/farmacologia , Carga Bacteriana/efeitos dos fármacos , Imunidade Inata/efeitos dos fármacos , Muco/efeitos dos fármacos , Doença Pulmonar Obstrutiva Crônica/prevenção & controle , Rhinovirus/efeitos dos fármacos , Administração por Inalação , Corticosteroides/administração & dosagem , Corticosteroides/imunologia , Animais , Infecções Bacterianas/microbiologia , Infecções Bacterianas/prevenção & controle , Linhagem Celular , Fluticasona/administração & dosagem , Fluticasona/imunologia , Fluticasona/farmacologia , Humanos , Pulmão/efeitos dos fármacos , Pulmão/microbiologia , Pulmão/virologia , Camundongos Knockout , Muco/microbiologia , Muco/virologia , Infecções por Picornaviridae/prevenção & controle , Infecções por Picornaviridae/virologia , Doença Pulmonar Obstrutiva Crônica/microbiologia , Doença Pulmonar Obstrutiva Crônica/virologia , Receptor de Interferon alfa e beta/genética , Receptor de Interferon alfa e beta/metabolismo , Rhinovirus/imunologia , Rhinovirus/fisiologia
11.
Pharmacol Ther ; 185: 155-169, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29287707

RESUMO

Dysregulated induction of goblet cell differentiation results in excessive production and retention of mucus and is a common feature of several chronic airways diseases. To date, therapeutic strategies to reduce mucus accumulation have focused primarily on altering the properties of the mucus itself, or have aimed to limit the production of mucus-stimulating cytokines. Here we review the current knowledge of key molecular pathways that are dysregulated during persistent goblet cell differentiation and highlights both pre-existing and novel therapeutic strategies to combat this pathology.


Assuntos
Diferenciação Celular , Células Caliciformes/fisiologia , Animais , Células Caliciformes/patologia , Humanos , Doenças Respiratórias/tratamento farmacológico , Doenças Respiratórias/patologia , Transdução de Sinais
12.
J Pathol ; 243(4): 510-523, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28862768

RESUMO

Asthma is a chronic inflammatory disease of the airways. It is characterized by allergic airway inflammation, airway remodelling, and airway hyperresponsiveness (AHR). Asthma patients, in particular those with chronic or severe asthma, have airway remodelling that is associated with the accumulation of extracellular matrix (ECM) proteins, such as collagens. Fibulin-1 (Fbln1) is an important ECM protein that stabilizes collagen and other ECM proteins. The level of Fbln1c, one of the four Fbln1 variants, which predominates in both humans and mice, is increased in the serum and airways fluids in asthma but its function is unclear. We show that the level of Fbln1c was increased in the lungs of mice with house dust mite (HDM)-induced chronic allergic airway disease (AAD). Genetic deletion of Fbln1c and therapeutic inhibition of Fbln1c in mice with chronic AAD reduced airway collagen deposition, and protected against AHR. Fbln1c-deficient (Fbln1c-/- ) mice had reduced mucin (MUC) 5 AC levels, but not MUC5B levels, in the airways as compared with wild-type (WT) mice. Fbln1c interacted with fibronectin and periostin that was linked to collagen deposition around the small airways. Fbln1c-/- mice with AAD also had reduced numbers of α-smooth muscle actin-positive cells around the airways and reduced airway contractility as compared with WT mice. After HDM challenge, these mice also had fewer airway inflammatory cells, reduced interleukin (IL)-5, IL-13, IL-33, tumour necrosis factor (TNF) and CXCL1 levels in the lungs, and reduced IL-5, IL-33 and TNF levels in lung-draining lymph nodes. Therapeutic targeting of Fbln1c reduced the numbers of GATA3-positive Th2 cells in the lymph nodes and lungs after chronic HDM challenge. Treatment also reduced the secretion of IL-5 and IL-13 from co-cultured dendritic cells and T cells restimulated with HDM extract. Human epithelial cells cultured with Fbln1c peptide produced more CXCL1 mRNA than medium-treated controls. Our data show that Fbln1c may be a therapeutic target in chronic asthma. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Assuntos
Remodelação das Vias Aéreas , Asma/metabolismo , Hiper-Reatividade Brônquica/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Inflamação/metabolismo , Pulmão/metabolismo , Actinas/metabolismo , Animais , Asma/imunologia , Asma/fisiopatologia , Asma/prevenção & controle , Hiper-Reatividade Brônquica/imunologia , Hiper-Reatividade Brônquica/fisiopatologia , Hiper-Reatividade Brônquica/prevenção & controle , Broncoconstrição , Proteínas de Ligação ao Cálcio/deficiência , Proteínas de Ligação ao Cálcio/genética , Células Cultivadas , Técnicas de Cocultura , Citocinas/genética , Citocinas/metabolismo , Modelos Animais de Doenças , Proteínas da Matriz Extracelular/deficiência , Proteínas da Matriz Extracelular/genética , Feminino , Genótipo , Humanos , Inflamação/imunologia , Inflamação/fisiopatologia , Inflamação/prevenção & controle , Mediadores da Inflamação/metabolismo , Pulmão/imunologia , Pulmão/fisiopatologia , Linfonodos/imunologia , Linfonodos/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fenótipo , Interferência de RNA , Transdução de Sinais , Linfócitos T/imunologia , Linfócitos T/metabolismo , Fatores de Tempo , Transfecção
13.
Curr Pulmonol Rep ; 6(1): 39-47, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28435782

RESUMO

PURPOSE OF REVIEW: The aim of this review is to provide the theoretical and practical knowledge essential for non-radiologists to develop the skills necessary to apply thoracic ultrasound as an extension of clinical assessment and intervention. RECENT FINDINGS: Issues relating to training and competence are discussed and a library of thoracic ultrasound videos is provided to illustrate artefacts, pleural, parenchymal and pneumothorax pathology as well as important pitfalls to consider. Novel and future diagnostic applications of thoracic ultrasound in the setting of acute cardiorespiratory pathology including consolidation, acute interstitial syndromes and pulmonary embolism are explored. SUMMARY: Thoracic ultrasound requires an understanding of imaging artefact specific to lung and pleura and a working knowledge of machine knobology for image optimisation and interpretation. Ultrasound is a valuable tool for the practicing chest clinician providing diagnostic information for the assessment of pleural and parenchymal disease and increased safety and cost effectiveness of thoracic interventions.

14.
Pharmacol Ther ; 169: 1-12, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27889330

RESUMO

A common feature of chronic respiratory disease is the progressive decline in lung function. The decline can be indolent, or it can be accelerated by acute exacerbations, whereby the patient experiences a pronounced worsening of disease symptoms. Moreover, acute exacerbations may also be a marker of insufficient disease management. The underlying cause of an acute exacerbation can be due to insults such as pathogens or environmental pollutants, or the cause can be unknown. For each acute exacerbation, the patient may require medical intervention such as rescue medication, or in more severe cases, hospitalization and ventilation and have an increased risk of death. Biologics, such as monoclonal antibodies, are being developed for chronic respiratory diseases including asthma, COPD and IPF. This therapeutic approach is particularly well suited for chronic use based on the route and frequency of delivery and importantly, the potential for disease modification. In recent clinical trials, the frequency of acute exacerbation has often been included as an endpoint, to help determine whether the investigational agent is impacting disease. Therefore the significance of acute exacerbations in driving disease, and their potential as a marker of disease activity and progression, has recently received much attention. There is also now a need to standardize the definition of an acute exacerbation in specific disease settings, particularly as this endpoint is increasingly used in clinical trials to also assess therapeutic efficacy. Moreover, specifically targeting exacerbations may offer a new therapeutic approach for several chronic respiratory diseases.


Assuntos
Asma/tratamento farmacológico , Produtos Biológicos/uso terapêutico , Fibrose Pulmonar Idiopática/tratamento farmacológico , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Doença Aguda , Asma/fisiopatologia , Produtos Biológicos/administração & dosagem , Doença Crônica , Progressão da Doença , Humanos , Fibrose Pulmonar Idiopática/fisiopatologia , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Testes de Função Respiratória
16.
Chest ; 147(3): 798-803, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25732446

RESUMO

Recent work has demonstrated that mechanical forces occurring in the airway as a consequence of bronchoconstriction are sufficient to not only induce symptoms but also influence airway biology. Animal and human in vitro and in vivo work demonstrates that the airways are structurally and functionally altered by mechanical stress induced by bronchoconstriction. Compression of the airway epithelium and mechanosensing by the airway smooth muscle trigger the activation and release of growth factors, causing cell proliferation, extracellular matrix protein accumulation, and goblet cell differentiation. These effects of bronchoconstriction are of major importance to asthma pathophysiology and appear sufficient to induce remodeling independent of the inflammatory response. We review these findings in detail and discuss previous studies in light of this new evidence regarding the influence of mechanical forces in the airways. Furthermore, we highlight potential impacts of therapies influencing mechanical forces on airway structure and function in asthma.


Assuntos
Antiasmáticos/uso terapêutico , Asma/tratamento farmacológico , Asma/fisiopatologia , Broncoconstrição/fisiologia , Sistema Respiratório/fisiopatologia , Animais , Asma/patologia , Proliferação de Células , Modelos Animais de Doenças , Proteínas da Matriz Extracelular/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Sistema Respiratório/patologia , Estresse Mecânico
18.
J Allergy Clin Immunol ; 127(5): 1148-54.e9, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21329968

RESUMO

BACKGROUND: Rhinoviruses are the major cause of asthma exacerbations. Previous studies suggest that primary bronchial epithelial cells (PBECs) from asthmatic subjects are more susceptible to rhinovirus infection because of deficient IFN-ß production. Although augmenting the innate immune response might provide a novel approach for treatment of virus-induced asthma exacerbations, the potential of IFN-ß to modulate antiviral and proinflammatory responses in asthmatic epithelium is poorly characterized. OBJECTIVES: We sought to compare responses of PBECs from nonasthmatic and asthmatic subjects to exogenous IFN-ß and test the inflammatory effects of IFN-ß in response to rhinovirus infection. METHODS: PBECs were treated with IFN-ß and infected with a low inoculum of human rhinovirus serotype 1B to simulate a natural viral infection. Expression of interferon-responsive genes and inflammatory responses were analyzed by using reverse transcription-quantitative real-time PCR, cytometric bead arrays, or both; viral titers were assessed by using the 50% tissue culture infection dose. RESULTS: Expression of IFN-ß-stimulated antiviral genes was comparable in PBECs from nonasthmatic or asthmatic donors. Exogenous IFN-ß significantly protected PBECs from asthmatic donors against rhinovirus infection by suppressing viral replication. Interferon-inducible protein 10 (IP-10), RANTES, and IL-6 release in response to rhinovirus infection was triggered only in PBECs from asthmatic donors. Although exogenous IFN-ß alone stimulated some release of IP-10 (but not IL-6 or RANTES), it significantly reduced rhinovirus-induced IP-10, RANTES, and IL-6 expression when tested in combination with rhinovirus. CONCLUSIONS: PBECs from asthmatic donors have a normal antiviral response to exogenous IFN-ß. The ability of IFN-ß to suppress viral replication suggests that it might limit virus-induced exacerbations by shortening the duration of the inflammatory response.


Assuntos
Anti-Inflamatórios/farmacologia , Antivirais/farmacologia , Asma/imunologia , Brônquios/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Interferon beta/farmacologia , Rhinovirus/patogenicidade , Adolescente , Adulto , Idoso , Anti-Inflamatórios/imunologia , Antivirais/imunologia , Asma/fisiopatologia , Asma/virologia , Brônquios/citologia , Brônquios/imunologia , Brônquios/virologia , Células Cultivadas , Células Epiteliais/imunologia , Células Epiteliais/virologia , Humanos , Interferon beta/imunologia , Pessoa de Meia-Idade , Infecções por Picornaviridae/imunologia , Infecções por Picornaviridae/virologia , Rhinovirus/efeitos dos fármacos , Rhinovirus/imunologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...