Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Acc Chem Res ; 56(21): 2968-2979, 2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-37889132

RESUMO

ConspectusThe energetic contribution of London dispersion (LD) can cover a broad range from very few to hundreds of kJ mol-1 for extended interaction interfaces due to its pairwise additivity. However, for a designed and successful application of LD in chemical catalysis, there are still many obstacles and questions that remain. In principle, LD can be regarded as the attractive part of the van der Waals potential. Thus, considering the whole van der Waals potential, including the repulsive part (steric repulsion), the ideal solution to the problem in catalysis would be to design compatible interaction interfaces at exactly the correct distance. In the case of a self-assembled, flexible structure arrangement, entropic contributions and solvent interactions might be detrimental. In the case of a rigid catalyst pocket, steric hindrance might not allow for large substituents that are usually applied as dispersion energy donors (DEDs). For a working catalytic system, the following question arises: how is it possible to dissect the complex interaction interfaces in terms of energetic contributions? Usually, the energetic contribution of LD to catalysis is addressed by using calculations. However, adequately computing the correct energetic contributions can be extremely challenging for a vast conformational space with all kinds of intermolecular interactions. Thus, experimental data are essential for comparison or benchmarking.Therefore, in this Account, we describe our quest for detailed experimental data obtained via NMR spectroscopy to experimentally dissect and quantify LD in catalytic systems. In addition, we address the question of whether bulky substituents used as DEDs can be used in confined catalytic pockets. With the example of Pd phosphoramidite complexes, we show how it is possible to experimentally dissect and quantify the contribution of individual interaction areas in complicated transition metal complexes. Furthermore, a correlation between conformational rigidity and heterodimer preference clearly reveals that LD can only unfold its full potential in cases where entropic contributions are minimized. This finding can also explain the small contribution of LD in flexible and solvent-exposed molecular balances. In the field of Brønsted acid catalysis, we demonstrated that LD has a strong influence on the structures, stability, and populations of confined catalytic intermediates. LD is key for populating higher aggregates such as dimers. In addition, offsets between the experimental and computational results were observed and attributed to solvent-solute dispersion interactions. We studied the delicate interplay of attractive and repulsive interactions by adding bulky DED substituents onto a substrate, which can function as a molecular balance system. Intriguingly, the effect of LD on the free substrate was straightforwardly transferred onto the highly confined intermediates. Furthermore, this effect could even be read out in the enantioselectivities of the underlying reaction. This conceptualized a general approach regarding how LD can be used beneficially in catalysis to convert from moderate/good to excellent stereoselectivities. It showcased that bulky groups such as tert-butyl must not only be regarded as occupied volumes.

2.
Angew Chem Int Ed Engl ; 62(27): e202301183, 2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-36994733

RESUMO

Chiral phosphoric acids (CPA) have become a privileged catalyst type in organocatalysis, but the selection of the optimum catalyst is still challenging. So far hidden competing reaction pathways may limit the maximum stereoselectivities and the potential of prediction models. In CPA-catalyzed transfer hydrogenation of imines, we identified for many systems two reaction pathways with inverse stereoselectivity, featuring as active catalyst either one CPA or a hydrogen bond bridged dimer. NMR measurements and DFT calculations revealed the dimeric intermediate and a stronger substrate activation via cooperativity. Both pathways are separable: Low temperatures and high catalysts loadings favor the dimeric pathway (ee up to -98 %), while low temperatures with reduced catalyst loading favor the monomeric pathway and give significantly enhanced ee (92-99 % ee; prior 68-86 % at higher temperatures). Thus, a broad impact is expected on CPA catalysis regarding reaction optimization and prediction.

3.
Chem Sci ; 13(48): 14366-14372, 2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36545144

RESUMO

BINOL derived chiral phosphoric acids (CPAs) are a prominent class of catalysts in the field of asymmetric organocatalysis, capable of transforming a wide selection of substrates with high stereoselectivities. Exploiting the Brønsted acidic and basic dual functionality of CPAs, substrates with both a hydrogen bond acceptor and donor functionality are frequently used as the resulting bidentate binding via two hydrogen bonds is expected to strongly confine the possible structural space and thus yield high stereoselectivities. Despite the huge success of CPAs and the popularity of a bidentate binding motif, experimental insights into their organization and origin of stereoinduction are scarce. Therefore, in this work the structural space and hydrogen bonding of CPAs and N-(ortho-hydroxyaryl) imines (19 CPA/imine combinations) was elucidated by low temperature NMR studies and corroborated by computations. The postulated bidentate binding of catalyst and substrate by two hydrogen bonds was experimentally validated by detection of trans-hydrogen bond scalar couplings. Counterintuitively, the resulting CPA/imine complexes showed a broad potential structural space and a strong preference towards the formation of [CPA/imine]2 dimers. Molecular dynamics simulations showed that in these dimers, the imines form each one hydrogen bond to two CPA molecules, effectively bridging them. By finetuning steric repulsion and noncovalent interactions, rigid and well-defined CPA/imine monomers could be obtained. NOESY studies corroborated by theoretical calculations revealed the structure of that complex, in which the imine is located in between the 3,3'-substituents of the catalyst and one site of the substrate is shielded by the catalyst, pinpointing the origin or stereoselectivity for downstream transformations.

4.
J Am Chem Soc ; 144(43): 19861-19871, 2022 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-36260790

RESUMO

London dispersion (LD) is attracting more and more attention in catalysis since LD is ubiquitously present and cumulative. Since dispersion is hard to grasp, recent research has concentrated mainly on the effect of LD in individual catalytic complexes or on the impact of dispersion energy donors (DEDs) on balance systems. The systematic transfer of LD effects onto confined and more complex systems in catalysis is still in its infancy, and no general approach for using DED residues in catalysis has emerged so far. Thus, on the example of asymmetric Brønsted acid catalyzed transfer hydrogenation of imines, we translated the findings of previously isolated balance systems onto confined catalytic intermediates, resulting in a systematic enhancement of stereoselectivity when employing DED-substituted substrates. As the imine substrate is present as Z- and E-isomers, which can, respectively, be converted to R- and S-product enantiomers, implementing tert-butyl groups as DED residues led to an additional stabilization of the Z-imine by up to 4.5 kJ/mol. NMR studies revealed that this effect is transferred onto catalyst/imine and catalyst/imine/nucleophile intermediates and that the underlying reaction mechanism is not affected. A clear correlation between ee and LD stabilization was demonstrated for 3 substrates and 10 catalysts, allowing to convert moderate-good to good-excellent enantioselectivities. Our findings conceptualize a general approach on how to beneficially employ DED residues in catalysis: they clearly showcase that bulky alkyl residues such as tert-butyl groups must be considered regarding not only their repulsive steric bulk but also their attractive properties even in catalytic complexes.


Assuntos
Iminas , Hidrogenação , Londres , Catálise , Estereoisomerismo
5.
Dalton Trans ; 50(39): 13985-13992, 2021 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-34542141

RESUMO

Magnesium cobaltates (Arnacnac)MgCo(COD)2 (1-3) were synthesised by reacting (Arnacnac)MgI(OEt2) with K[Co(η4-COD)2] (COD = 1,5-cyclooctadiene) [Arnacnac = CH(ArNCMe)2; Ar = 2,4,6-Me3-C6H2 (Mes), 2,6-Et2-C6H3 (Dep), 2,6-iPr2-C6H3Mes (Dipp)]. Compounds 1-3 form contact ion-pairs in toluene, while solvent separated ion-pairs are formed in THF. The effect of ion-pairing on the reactivity is illustrated by reaction of 2 with tert-butylphosphaalkyne, which affords distinct 1,3-diphosphacyclobutadiene complexes. The heteroleptic sandwich complex [(Depnacnac)MgCo(P2C2tBu2)]2 (4) is selectively formed in toluene, while the homoleptic bis(1,3-diphosphacyclobutadiene) complex [(Depnacnac)Mg(THF)3][Co(P2C2tBu2)2] (5) is obtained in THF. Complex 4 is a precursor to further unusual phosphaorganometallic compounds. Substitution of the labile COD ligand in 4 by white phosphorus (P4) enabled the synthesis of the phosphorus-rich sandwich compound [(Depnacnac)MgCoP4(P2C2tBu2)]2 (6). The heterobimetallic complex (Cp*NiP2C2tBu2)Co(COD) (7) was isolated after treatment of 4 with Cp*Ni(acac) (Cp* = C5Me5, acac = acetylacetonate).

6.
Chemistry ; 27(56): 14128-14137, 2021 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-34403183

RESUMO

A series of molecular group 2 polyphosphides has been synthesized by using air-stable [Cp*Fe(η5 -P5 )] (Cp*=C5 Me5 ) or white phosphorus as polyphosphorus precursors. Different types of group 2 reagents such as organo-magnesium, mono-valent magnesium, and molecular calcium hydride complexes have been investigated to activate these polyphosphorus sources. The organo-magnesium complex [(Dipp BDI-Mg(CH3 ))2 ] (Dipp BDI={[2,6-i Pr2 C6 H3 NCMe]2 CH}- ) reacts with [Cp*Fe(η5 -P5 )] to give an unprecedented Mg/Fe-supramolecular wheel. Kinetically controlled activation of [Cp*Fe(η5 -P5 )] by different mono-valent magnesium complexes allowed the isolation of Mg-coordinated formally mono- and di-reduced products of [Cp*Fe(η5 -P5 )]. To obtain the first examples of molecular calcium-polyphosphides, a molecular calcium hydride complex was used to reduce the aromatic cyclo-P5 ring of [Cp*Fe(η5 -P5 )]. The Ca-Fe-polyphosphide is also characterized by quantum chemical calculations and compared with the corresponding Mg complex. Moreover, a calcium coordinated Zintl ion (P7 )3- was obtained by molecular calcium hydride mediated P4 reduction.

7.
J Am Chem Soc ; 143(25): 9350-9354, 2021 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-34156845

RESUMO

N,O-Acetals derived from α,ß-unsaturated ß-aryl substituted aldehydes and (1-aminocyclohexyl)methanol were found to undergo a catalytic enantioselective [2 + 2] photocycloaddition to a variety of olefins (19 examples, 54-96% yield, 84-98% ee). The reaction was performed by visible light irradiation (λ = 459 nm). A chiral phosphoric acid (10 mol %) with an (R)-1,1'-bi-2-naphthol (binol) backbone served as the catalyst. The acid displays two thioxanthone groups attached to position 3 and 3' of the binol core via a meta-substituted phenyl linker. NMR studies confirmed the formation of an iminium ion which is attached to the acid counterion in a hydrogen-bond assisted ion pair. The catalytic activity of the acid rests on the presence of the thioxanthone moieties which enable a facile triplet energy transfer and an efficient enantioface differentiation.

8.
Angew Chem Int Ed Engl ; 60(14): 7920-7926, 2021 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-33438798

RESUMO

An enantioselective sulfimidation of 3-thiosubstituted 2-quinolones and 2-pyridones was achieved with a stoichiometric nitrene source (PhI=NNs) and a silver-based catalyst system. Key to the success of the reaction is the use of a chiral phenanthroline ligand with a hydrogen bonding site. The enantioselectivity does not depend on the size of the two substituents at the sulfur atom but only on the binding properties of the heterocyclic lactams. A total of 21 chiral sulfimides were obtained in high yields (44-99 %) and with significant enantiomeric excess (70-99 % ee). The sulfimidation proceeds with high site-selectivity and can also be employed for the kinetic resolution of chiral sulfoxides. Mechanistic evidence suggests the intermediacy of a heteroleptic silver complex, in which the silver atom is bound to one molecule of the chiral ligand and one molecule of an achiral 1,10-phenanthroline. Support for the suggested reaction course was obtained by ESI mass spectrometry, DFT calculations, and a Hammett analysis.

9.
Chemistry ; 26(23): 5190-5194, 2020 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-32065432

RESUMO

A chiral phosphoric acid with a 2,2'-binaphthol core was prepared that displays two thioxanthone moieties at the 3,3'-position as light-harvesting antennas. Despite its relatively low triplet energy, the phosphoric acid was found to be an efficient catalyst for the enantioselective intermolecular [2+2] photocycloaddition of ß-carboxyl-substituted cyclic enones (e.r. up to 93:7). Binding of the carboxylic acid to the sensitizer is suggested by NMR studies and by DFT calculations to occur by means of two hydrogen bonds. The binding event not only enables an enantioface differentiation but also modulates the triplet energy of the substrates.

10.
Chem Sci ; 11(17): 4381-4390, 2020 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-34122895

RESUMO

Organocatalysis has revolutionized asymmetric synthesis. However, the supramolecular interactions of organocatalysts in solution are often neglected, although the formation of catalyst aggregates can have a strong impact on the catalytic reaction. For phosphoric acid based organocatalysts, we have now established that catalyst-catalyst interactions can be suppressed by using macrocyclic catalysts, which react predominantly in a monomeric fashion, while they can be favored by integration into a bifunctional catenane, which reacts mainly as phosphoric acid dimers. For acyclic phosphoric acids, we found a strongly concentration dependent behavior, involving both monomeric and dimeric catalytic pathways. Based on a detailed experimental analysis, DFT-calculations and direct NMR-based observation of the catalyst aggregates, we could demonstrate that intermolecular acid-acid interactions have a drastic influence on the reaction rate and stereoselectivity of asymmetric transfer-hydrogenation catalyzed by chiral phosphoric acids.

11.
J Am Chem Soc ; 141(41): 16398-16407, 2019 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-31545037

RESUMO

NMR provides both structural and dynamic information, which is key to connecting intermediates and to understanding reaction pathways. However, fast exchanging catalytic intermediates are often inaccessible by conventional NMR due its limited time resolution. Here, we show the combined application of the 1H off-resonance R1ρ NMR method and low temperature (185-175 K) to resolve intermediates exchanging on a µs time scale (ns at room temperature). The potential of the approach is demonstrated on chiral phosphoric acid (CPA) catalysts in their complexes with imines. The otherwise inaccessible exchange kinetics of the E-I ⇌ E-II imine conformations and thermodynamic E-I:E-II imine ratios inside the catalyst pocket are experimentally determined and corroborated by calculations. The E-I ⇌ E-II exchange rate constants (kex185 K) for different catalyst-substrate binary complexes varied between 2500 and 19 000 s-1 (τex = 500-50 µs). Theoretical analysis of these exchange rate constants revealed the involvement of an intermediary tilted conformation E-III, which structurally resembles the hydride transfer transition state. The main E-I and E-II exchange pathway is a hydrogen bond strength dependent tilting-switching-tilting mechanism via a bifurcated hydrogen bond as a transition state. The reduction in the sterics of the catalyst showed an accelerated switching process by at least an order of magnitude and enabled an additional rotational pathway. Hence, the exchange process is mainly a function of the intrinsic properties of the 3,3'-substituents of the catalyst. Overall, we believe that the present study opens a new dimension in catalysis via experimental access to structures, populations, and kinetics of catalyst-substrate complexes on the µs time scale by the 1H off-resonance R1ρ method.


Assuntos
Espectroscopia de Ressonância Magnética/métodos , Catálise , Ligação de Hidrogênio , Modelos Moleculares , Estrutura Molecular , Temperatura
12.
Chem Sci ; 10(20): 5226-5234, 2019 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-31191877

RESUMO

BINOL derived chiral phosphoric acids (CPAs) are widely known for their high selectivity. Numerous 3,3'-substituents are used for a variety of stereoselective reactions and theoretical models of their effects are provided. However, experimental data about the structural space of CPA complexes in solution is extremely rare and so far restricted to NMR investigations of binary TRIP/imine complexes featuring two E- and two Z-imine conformations. Therefore, in this paper the structural space of 16 CPA/imine binary complexes is screened and 8 of them are investigated in detail by NMR. For the first time dimers of CPA/imine complexes in solution were experimentally identified, which show an imine position similar to the transition state in transfer hydrogenations. Furthermore, our experimental and computational data revealed an astonishing invariance of the four core structures regardless of the different steric and electronic properties of the 3,3'-substituent. However, a significant variation of E/Z-ratios is observed, demonstrating a strong influence of the 3,3'-substituents on the stabilization of the imine in the complexes. These experimental E/Z-ratios cannot be reproduced by calculations commonly applied for mechanistic studies, despite extensive conformational scans and treatment of the electronic structure at a high level of theory with various implicit solvent corrections. Thus, these first detailed experimental data about the structural space and influence of the 3,3'-substituent on the energetics of CPA/imine complexes can serve as basis to validate and improve theoretical predictive models.

13.
Chem Sci ; 10(43): 10025-10034, 2019 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-32015815

RESUMO

The concept of hydrogen bonding for enhancing substrate binding and controlling selectivity and reactivity is central in catalysis. However, the properties of these key hydrogen bonds and their catalyst-dependent variations are extremely difficult to determine directly by experiments. Here, for the first time the hydrogen bond properties of a whole series of BINOL-derived chiral phosphoric acid (CPA) catalysts in their substrate complexes with various imines were investigated to derive the influence of different 3,3'-substituents on the acidity and reactivity. NMR 1H and 15N chemical shifts and 1 J NH coupling constants of these hydrogen bonds were used to establish an internal acidity scale corroborated by calculations. Deviations from calculated external acidities reveal the importance of intermolecular interactions for this key feature of CPAs. For CPAs with similarly sized binding pockets, a correlation of reactivity and hydrogen bond strengths of the catalyst was found. A catalyst with a very small binding pocket showed significantly reduced reactivities. Therefore, NMR isomerization kinetics, population and chemical shift analyses of binary and ternary complexes as well as reaction kinetics were performed to address the steps of the transfer hydrogenation influencing the overall reaction rate. The results of CPAs with different 3,3'-substituents show a delicate balance between the isomerization and the ternary complex formation to be rate-determining. For CPAs with an identical acidic motif and similar sterics, reactivity and internal acidity correlated inversely. In cases where higher sterical demand within the binary complex hinders the binding of the second substrate, the correlation between acidity and reactivity breaks down.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...