Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Stud Mycol ; 101: 417-564, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36059898

RESUMO

This paper is the fourth contribution in the Genera of Phytopathogenic Fungi (GOPHY) series. The series provides morphological descriptions and information about the pathology, distribution, hosts and disease symptoms, as well as DNA barcodes for the taxa covered. Moreover, 12 whole-genome sequences for the type or new species in the treated genera are provided. The fourth paper in the GOPHY series covers 19 genera of phytopathogenic fungi and their relatives, including Ascochyta, Cadophora, Celoporthe, Cercospora, Coleophoma, Cytospora, Dendrostoma, Didymella, Endothia, Heterophaeomoniella, Leptosphaerulina, Melampsora, Nigrospora, Pezicula, Phaeomoniella, Pseudocercospora, Pteridopassalora, Zymoseptoria, and one genus of oomycetes, Phytophthora. This study includes two new genera, 30 new species, five new combinations, and 43 typifications of older names. Taxonomic novelties: New genera: Heterophaeomoniella L. Mostert, C.F.J. Spies, Halleen & Gramaje, Pteridopassalora C. Nakash. & Crous; New species: Ascochyta flava Qian Chen & L. Cai, Cadophora domestica L. Mostert, R. van der Merwe, Halleen & Gramaje, Cadophora rotunda L. Mostert, R. van der Merwe, Halleen & Gramaje, Cadophora vinacea J.R. Úrbez-Torres, D.T. O'Gorman & Gramaje, Cadophora vivarii L. Mostert, Havenga, Halleen & Gramaje, Celoporthe foliorum H. Suzuki, Marinc. & M.J. Wingf., Cercospora alyssopsidis M. Bakhshi, Zare & Crous, Dendrostoma elaeocarpi C.M. Tian & Q. Yang, Didymella chlamydospora Qian Chen & L. Cai, Didymella gei Qian Chen & L. Cai, Didymella ligulariae Qian Chen & L. Cai, Didymella qilianensis Qian Chen & L. Cai, Didymella uniseptata Qian Chen & L. Cai, Endothia cerciana W. Wang. & S.F. Chen, Leptosphaerulina miscanthi Qian Chen & L. Cai, Nigrospora covidalis M. Raza, Qian Chen & L. Cai, Nigrospora globospora M. Raza, Qian Chen & L. Cai, Nigrospora philosophiae-doctoris M. Raza, Qian Chen & L. Cai, Phytophthora transitoria I. Milenkovic, T. Májek & T. Jung, Phytophthora panamensis T. Jung, Y. Balci, K. Broders & I. Milenkovic, Phytophthora variabilis T. Jung, M. Horta Jung & I. Milenkovic, Pseudocercospora delonicicola C. Nakash., L. Suhaizan & I. Nurul Faziha, Pseudocercospora farfugii C. Nakash., I. Araki, & Ai Ito, Pseudocercospora hardenbergiae Crous & C. Nakash., Pseudocercospora kenyirana C. Nakash., L. Suhaizan & I. Nurul Faziha, Pseudocercospora perrottetiae Crous, C. Nakash. & C.Y. Chen, Pseudocercospora platyceriicola C. Nakash., Y. Hatt, L. Suhaizan & I. Nurul Faziha, Pseudocercospora stemonicola C. Nakash., Y. Hatt., L. Suhaizan & I. Nurul Faziha, Pseudocercospora terengganuensis C. Nakash., Y. Hatt., L. Suhaizan & I. Nurul Faziha, Pseudocercospora xenopunicae Crous & C. Nakash.; New combinations: Heterophaeomoniella pinifoliorum (Hyang B. Lee et al.) L. Mostert, C.F.J. Spies, Halleen & Gramaje, Pseudocercospora pruni-grayanae (Sawada) C. Nakash. & Motohashi., Pseudocercospora togashiana (K. Ito & Tak. Kobay.) C. Nakash. & Tak. Kobay., Pteridopassalora nephrolepidicola (Crous & R.G. Shivas) C. Nakash. & Crous, Pteridopassalora lygodii (Goh & W.H. Hsieh) C. Nakash. & Crous; Typification: Epitypification: Botrytis infestans Mont., Cercospora abeliae Katsuki, Cercospora ceratoniae Pat. & Trab., Cercospora cladrastidis Jacz., Cercospora cryptomeriicola Sawada, Cercospora dalbergiae S.H. Sun, Cercospora ebulicola W. Yamam., Cercospora formosana W. Yamam., Cercospora fukuii W. Yamam., Cercospora glochidionis Sawada, Cercospora ixorana J.M. Yen & Lim, Cercospora liquidambaricola J.M. Yen, Cercospora pancratii Ellis & Everh., Cercospora pini-densiflorae Hori & Nambu, Cercospora profusa Syd. & P. Syd., Cercospora pyracanthae Katsuki, Cercospora horiana Togashi & Katsuki, Cercospora tabernaemontanae Syd. & P. Syd., Cercospora trinidadensis F. Stevens & Solheim, Melampsora laricis-urbanianae Tak. Matsumoto, Melampsora salicis-cupularis Wang, Phaeoisariopsis pruni-grayanae Sawada, Pseudocercospora angiopteridis Goh & W.H. Hsieh, Pseudocercospora basitruncata Crous, Pseudocercospora boehmeriigena U. Braun, Pseudocercospora coprosmae U. Braun & C.F. Hill, Pseudocercospora cratevicola C. Nakash. & U. Braun, Pseudocercospora cymbidiicola U. Braun & C.F. Hill, Pseudocercospora dodonaeae Boesew., Pseudocercospora euphorbiacearum U. Braun, Pseudocercospora lygodii Goh & W.H. Hsieh, Pseudocercospora metrosideri U. Braun, Pseudocercospora paraexosporioides C. Nakash. & U. Braun, Pseudocercospora symploci Katsuki & Tak. Kobay. ex U. Braun & Crous, Septogloeum punctatum Wakef.; Neotypification: Cercospora aleuritis I. Miyake; Lectotypification: Cercospora dalbergiae S.H. Sun, Cercospora formosana W. Yamam., Cercospora fukuii W. Yamam., Cercospora glochidionis Sawada, Cercospora profusa Syd. & P. Syd., Melampsora laricis-urbanianae Tak. Matsumoto, Phaeoisariopsis pruni-grayanae Sawada, Pseudocercospora symploci Katsuki & Tak. Kobay. ex U. Braun & Crous. Citation: Chen Q, Bakhshi M, Balci Y, Broders KD, Cheewangkoon R, Chen SF, Fan XL, Gramaje D, Halleen F, Horta Jung M, Jiang N, Jung T, Májek T, Marincowitz S, Milenkovic T, Mostert L, Nakashima C, Nurul Faziha I, Pan M, Raza M, Scanu B, Spies CFJ, Suhaizan L, Suzuki H, Tian CM, Tomsovský M, Úrbez-Torres JR, Wang W, Wingfield BD, Wingfield MJ, Yang Q, Yang X, Zare R, Zhao P, Groenewald JZ, Cai L, Crous PW (2022). Genera of phytopathogenic fungi: GOPHY 4. Studies in Mycology 101: 417-564. doi: 10.3114/sim.2022.101.06.

2.
Fungal Syst Evol ; 9: 161-200, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35978986

RESUMO

Seven Fusarium species complexes are treated, namely F. aywerte species complex (FASC) (two species), F. buharicum species complex (FBSC) (five species), F. burgessii species complex (FBURSC) (three species), F. camptoceras species complex (FCAMSC) (three species), F. chlamydosporum species complex (FCSC) (eight species), F. citricola species complex (FCCSC) (five species) and the F. concolor species complex (FCOSC) (four species). New species include Fusicolla elongata from soil (Zimbabwe), and Neocosmospora geoasparagicola from soil associated with Asparagus officinalis (Netherlands). New combinations include Neocosmospora akasia, N. awan, N. drepaniformis, N. duplosperma, N. geoasparagicola, N. mekan, N. papillata, N. variasi and N. warna. Newly validated taxa include Longinectria gen. nov., L. lagenoides, L. verticilliforme, Fusicolla gigas and Fusicolla guangxiensis. Furthermore, Fusarium rosicola is reduced to synonymy under N. brevis. Finally, the genome assemblies of Fusarium secorum (CBS 175.32), Microcera coccophila (CBS 310.34), Rectifusarium robinianum (CBS 430.91), Rugonectria rugulosa (CBS 126565), and Thelonectria blattea (CBS 952.68) are also announced here. Citation: Crous PW, Sandoval-Denis M, Costa MM, Groenewald JZ, van Iperen AL, Starink-Willemse M, Hernández-Restrepo M, Kandemir H, Ulaszewski B, de Boer W, Abdel-Azeem AM, Abdollahzadeh J, Akulov A, Bakhshi M, Bezerra JDP, Bhunjun CS, Câmara MPS, Chaverri P, Vieira WAS, Decock CA, Gaya E, Gené J, Guarro J, Gramaje D, Grube M, Gupta VK, Guarnaccia V, Hill R, Hirooka Y, Hyde KD, Jayawardena RS, Jeewon R, Jurjevic Z, Korsten L, Lamprecht SC, Lombard L, Maharachchikumbura SSN, Polizzi G, Rajeshkumar KC, Salgado-Salazar C, Shang Q-J, Shivas RG, Summerbell RC, Sun GY, Swart WJ, Tan YP, Vizzini A, Xia JW, Zare R, González CD, Iturriaga T, Savary O, Coton M, Coton E, Jany J-L, Liu C, Zeng Z-Q, Zhuang W-Y, Yu Z-H, Thines M (2022). Fusarium and allied fusarioid taxa (FUSA). 1. Fungal Systematics and Evolution 9: 161-200. doi: 10.3114/fuse.2022.09.08.

4.
Stud Mycol ; 98: 100116, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34466168

RESUMO

Recent publications have argued that there are potentially serious consequences for researchers in recognising distinct genera in the terminal fusarioid clade of the family Nectriaceae. Thus, an alternate hypothesis, namely a very broad concept of the genus Fusarium was proposed. In doing so, however, a significant body of data that supports distinct genera in Nectriaceae based on morphology, biology, and phylogeny is disregarded. A DNA phylogeny based on 19 orthologous protein-coding genes was presented to support a very broad concept of Fusarium at the F1 node in Nectriaceae. Here, we demonstrate that re-analyses of this dataset show that all 19 genes support the F3 node that represents Fusarium sensu stricto as defined by F. sambucinum (sexual morph synonym Gibberella pulicaris). The backbone of the phylogeny is resolved by the concatenated alignment, but only six of the 19 genes fully support the F1 node, representing the broad circumscription of Fusarium. Furthermore, a re-analysis of the concatenated dataset revealed alternate topologies in different phylogenetic algorithms, highlighting the deep divergence and unresolved placement of various Nectriaceae lineages proposed as members of Fusarium. Species of Fusarium s. str. are characterised by Gibberella sexual morphs, asexual morphs with thin- or thick-walled macroconidia that have variously shaped apical and basal cells, and trichothecene mycotoxin production, which separates them from other fusarioid genera. Here we show that the Wollenweber concept of Fusarium presently accounts for 20 segregate genera with clear-cut synapomorphic traits, and that fusarioid macroconidia represent a character that has been gained or lost multiple times throughout Nectriaceae. Thus, the very broad circumscription of Fusarium is blurry and without apparent synapomorphies, and does not include all genera with fusarium-like macroconidia, which are spread throughout Nectriaceae (e.g., Cosmosporella, Macroconia, Microcera). In this study four new genera are introduced, along with 18 new species and 16 new combinations. These names convey information about relationships, morphology, and ecological preference that would otherwise be lost in a broader definition of Fusarium. To assist users to correctly identify fusarioid genera and species, we introduce a new online identification database, Fusarioid-ID, accessible at www.fusarium.org. The database comprises partial sequences from multiple genes commonly used to identify fusarioid taxa (act1, CaM, his3, rpb1, rpb2, tef1, tub2, ITS, and LSU). In this paper, we also present a nomenclator of names that have been introduced in Fusarium up to January 2021 as well as their current status, types, and diagnostic DNA barcode data. In this study, researchers from 46 countries, representing taxonomists, plant pathologists, medical mycologists, quarantine officials, regulatory agencies, and students, strongly support the application and use of a more precisely delimited Fusarium (= Gibberella) concept to accommodate taxa from the robust monophyletic node F3 on the basis of a well-defined and unique combination of morphological and biochemical features. This F3 node includes, among others, species of the F. fujikuroi, F. incarnatum-equiseti, F. oxysporum, and F. sambucinum species complexes, but not species of Bisifusarium [F. dimerum species complex (SC)], Cyanonectria (F. buxicola SC), Geejayessia (F. staphyleae SC), Neocosmospora (F. solani SC) or Rectifusarium (F. ventricosum SC). The present study represents the first step to generating a new online monograph of Fusarium and allied fusarioid genera (www.fusarium.org).

5.
Plant Dis ; 104(3): 761-771, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31944904

RESUMO

Juglans regia L. (English walnut) trees with cankers and dieback symptoms were observed in two regions in the Czech Republic. Isolations were made from diseased branches. In total, 138 fungal isolates representing 10 fungal species were obtained from wood samples and identified based on morphological characteristics and molecular methods: Cadophora novi-eboraci, Cadophora spadicis, Cryptovalsa ampelina, Diaporthe eres, Diplodia seriata, Dothiorella omnivora, Eutypa lata, Eutypella sp., Peroneutypa scoparia, and Phaeoacremonium sicilianum. Pathogenicity tests conducted under field conditions with all species using the mycelium-plug method indicated that Eutypa lata and Cadophora spp. were highly virulent to woody stems of walnut. This is the first study to detect and identify fungal trunk pathogens associated with diseased walnut trees in Europe.


Assuntos
Juglans , Vitis , República Tcheca , Europa (Continente) , Doenças das Plantas
6.
Stud Mycol ; 92: 47-133, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29997401

RESUMO

This paper represents the second contribution in the Genera of Phytopathogenic Fungi (GOPHY) series. The series provides morphological descriptions and information regarding the pathology, distribution, hosts and disease symptoms for the treated genera. In addition, primary and secondary DNA barcodes for the currently accepted species are included. This second paper in the GOPHY series treats 20 genera of phytopathogenic fungi and their relatives including: Allantophomopsiella, Apoharknessia, Cylindrocladiella, Diaporthe, Dichotomophthora, Gaeumannomyces, Harknessia, Huntiella, Macgarvieomyces, Metulocladosporiella, Microdochium, Oculimacula, Paraphoma, Phaeoacremonium, Phyllosticta, Proxypiricularia, Pyricularia, Stenocarpella, Utrechtiana and Wojnowiciella. This study includes the new genus Pyriculariomyces, 20 new species, five new combinations, and six typifications for older names.

7.
Persoonia ; 40: 135-153, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30504999

RESUMO

Species of Diaporthe are considered important plant pathogens, saprobes, and endophytes on a wide range of plant hosts. Several species are well-known on grapevines, either as agents of pre- or post-harvest infections, including Phomopsis cane and leaf spot, cane bleaching, swelling arm and trunk cankers. In this study we explore the occurrence, diversity and pathogenicity of Diaporthe spp. associated with Vitis vinifera in major grape production areas of Europe and Israel, focusing on nurseries and vineyards. Surveys were conducted in Croatia, Czech Republic, France, Hungary, Israel, Italy, Spain and the UK. A total of 175 Diaporthe strains were isolated from asymptomatic and symptomatic shoots, branches and trunks. A multi-locus phylogeny was established based on five genomic loci (ITS, tef1, cal, his3 and tub2), and the morphological characters of the isolates were determined. Preliminary pathogenicity tests were performed on green grapevine shoots with representative isolates. The most commonly isolated species were D. eres and D. ampelina. Four new Diaporthe species described here as D. bohemiae, D. celeris, D. hispaniae and D. hungariae were found associated with affected vines. Pathogenicity tests revealed D. baccae, D. celeris, D. hispaniae and D. hungariae as pathogens of grapevines. No symptoms were caused by D. bohemiae. This study represents the first report of D. ambigua and D. baccae on grapevines in Europe. The present study improves our understanding of the species associated with several disease symptoms on V. vinifera plants, and provides useful information for effective disease management.

9.
Persoonia ; 34: 167-266, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26240451

RESUMO

Novel species of fungi described in the present study include the following from Malaysia: Castanediella eucalypti from Eucalyptus pellita, Codinaea acacia from Acacia mangium, Emarcea eucalyptigena from Eucalyptus brassiana, Myrtapenidiella eucalyptorum from Eucalyptus pellita, Pilidiella eucalyptigena from Eucalyptus brassiana and Strelitziana malaysiana from Acacia mangium. Furthermore, Stachybotrys sansevieriicola is described from Sansevieria ehrenbergii (Tanzania), Phacidium grevilleae from Grevillea robusta (Uganda), Graphium jumulu from Adansonia gregorii and Ophiostoma eucalyptigena from Eucalyptus marginata (Australia), Pleurophoma ossicola from bone and Plectosphaerella populi from Populus nigra (Germany), Colletotrichum neosansevieriae from Sansevieria trifasciata, Elsinoë othonnae from Othonna quinquedentata and Zeloasperisporium cliviae (Zeloasperisporiaceae fam. nov.) from Clivia sp. (South Africa), Neodevriesia pakbiae, Phaeophleospora hymenocallidis and Phaeophleospora hymenocallidicola on leaves of a fern (Thailand), Melanconium elaeidicola from Elaeis guineensis (Indonesia), Hormonema viticola from Vitis vinifera (Canary Islands), Chlorophyllum pseudoglobossum from a grassland (India), Triadelphia disseminata from an immunocompromised patient (Saudi Arabia), Colletotrichum abscissum from Citrus (Brazil), Polyschema sclerotigenum and Phialemonium limoniforme from human patients (USA), Cadophora vitícola from Vitis vinifera (Spain), Entoloma flavovelutinum and Bolbitius aurantiorugosus from soil (Vietnam), Rhizopogon granuloflavus from soil (Cape Verde Islands), Tulasnella eremophila from Euphorbia officinarum subsp. echinus (Morocco), Verrucostoma martinicensis from Danaea elliptica (French West Indies), Metschnikowia colchici from Colchicum autumnale (Bulgaria), Thelebolus microcarpus from soil (Argentina) and Ceratocystis adelpha from Theobroma cacao (Ecuador). Myrmecridium iridis (Myrmecridiales ord. nov., Myrmecridiaceae fam. nov.) is also described from Iris sp. (The Netherlands). Novel genera include (Ascomycetes): Budhanggurabania from Cynodon dactylon (Australia), Soloacrosporiella, Xenocamarosporium, Neostrelitziana and Castanediella from Acacia mangium and Sabahriopsis from Eucalyptus brassiana (Malaysia), Readerielliopsis from basidiomata of Fuscoporia wahlbergii (French Guyana), Neoplatysporoides from Aloe ferox (Tanzania), Wojnowiciella, Chrysofolia and Neoeriomycopsis from Eucalyptus (Colombia), Neophaeomoniella from Eucalyptus globulus (USA), Pseudophaeomoniella from Olea europaea (Italy), Paraphaeomoniella from Encephalartos altensteinii, Aequabiliella, Celerioriella and Minutiella from Prunus (South Africa). Tephrocybella (Basidiomycetes) represents a novel genus from wood (Italy). Morphological and culture characteristics along with ITS DNA barcodes are provided for all taxa.

10.
Plant Dis ; 98(5): 689, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-30708520

RESUMO

Since 2010, a new foliar and fruit disease was observed in pomegranate (Punica granatum L.) orchards in Alicante Province (eastern Spain). Symptoms included black spots on leaves and fruits, as well as chlorosis and premature abscission of leaves. Fungal isolates were obtained by surface-disinfecting small fragments of symptomatic leaf and fruit tissues in 0.5% NaOCl, double-rinsing in sterile water, and plating them onto potato dextrose agar (PDA) amended with 0.5 g/liter of streptomycin sulfate. Gray-to-black colonies were obtained, which were identified as Alternaria sp. based on the dark, brown, obclavate to obpyriform catenulate conidia with longitudinal and transverse septa tapering to a prominent beak attached in chains on a simple and short conidiophore (4). Conidia (n = 100) measured (12.2-) 20.2 (-27.6) × (5.7-) 9.2 (-12.0) µm, and had 3 to 6 transverse and 0 to 5 longitudinal septa. Single spore cultures were obtained and their genomic DNA was extracted. The internal transcribed spacer (ITS) region of rDNA and partial sequences of the beta tubulin gene were amplified and sequenced with primers ITS1-ITS4 and Bt1a-Bt1b, respectively (3). BLAST analysis of the sequences showed that they were 100% identical to a pathogenic A. alternata (Fr.) Keissl. isolate obtained from black spot disease of pomegranate in Israel (Accession No. JN247826.1, ITS and Accession No. JN247836.1, beta tubulin) (2). As all the sequences obtained showed 100% homology, ITS and beta tubulin sequences of a representative isolate (1516B) were submitted to GenBank (KF199871 and KF199872, respectively). In addition, a PCR reaction with specific primers (C_for/C_rev) designed to recognize highly virulent isolates of A. alternata causing black spot of pomegranate was used with all isolates (2). A characteristic fragment of ~950 bp was amplified in two isolates: 1552B and 1707B. Pathogenicity was assessed on plants and detached fruit of pomegranate cv. Mollar (1). Two-year-old pomegranate trees were inoculated with isolates 1552B and 1707B by spraying a conidial suspension (106 conidia/ml) onto the upper and lower leaf surfaces. Five plants per fungal isolate were used and five control plants were sprayed with sterile water. Plants were covered with transparent plastic bags and incubated in a growth chamber for 1 month at 25°C, with a 12-h photoperiod. One-month-old fruits were surface sterilized in 1.5% sodium hypochlorite solution for 1 min and rinsed twice in water. Two filter paper squares (5 × 5 mm) were dipped in the conidial suspensions and placed on the fruit surface. Inoculated fruit were incubated in a humid chamber in the dark at 25°C. Ten fruit per fungal isolate were used and 10 control fruit were inoculated with sterile water. Black spots were visible on inoculated leaves and fruit, 10 and 3 days after inoculation, respectively. Symptoms were not observed on controls. The fungus was re-isolated from leaf and fruit lesions, confirming Koch's postulates. Leaf black spot of pomegranate caused by A. alternata was first described in India in 1988, and later in Israel in 2010 affecting both fruit and leaves (1). To our knowledge, this is the first report of the disease in Spain, where it could represent a threat for pomegranate cultivation due to the increasing amount of area dedicated to this crop. References: (1) D. Ezra et al. Australas. Plant Dis. Notes 5:1, 2010. (2) T. Gat et al. Plant Dis. 96:1513, 2012. (3) N. L. Glass and G. C. Donaldson. Appl. Environ. Microbiol. 61:1323, 1995. (4) E. G. Simmons. Alternaria: An identification manual. CBS Fungal Biodiversity Center, Utrecht, Netherlands, 2007.

11.
Plant Dis ; 98(7): 1001, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30708872

RESUMO

In July 2011, a survey was conducted to evaluate the phytosanitary status of apricot trees (Prunus armeniaca L.) in an orchard in Binissalem (Mallorca Island, Spain). Fungal isolation was performed on a 40-year-old apricot trees (cv. Galta Vermella, double-grafted onto bitter almond and Japanese plum) showing a collapse of branches, chlorosis of leaves, and shoot dieback. These symptoms appeared in approximately 10% of the trees. Black spots and dark streaking of the xylem vessels were observed in cross- or longitudinal sections of the branches. Symptomatic branches were collected and wood sections (10 cm long) were cut, washed under running tap water, surface-disinfested for 1 min in a 1.5% sodium hypochlorite solution, and washed twice with sterile distilled water. The sections were split longitudinally, and small pieces of discolored tissues were plated onto malt extract agar (MEA) supplemented with 0.5 g liter-1 of streptomycin sulfate. Dishes were incubated at 25°C in the dark for 14 to 21 days, and all colonies were transferred to potato dextrose agar (PDA). A Phaeoacremonium sp. was consistently isolated from necrotic tissues (more than 50% of the isolations). Single conidial isolates were obtained and grown on PDA and MEA in the dark at 25°C for 2 to 3 weeks until colonies produced spores (3). Colonies were brownish orange on PDA and MEA. Conidiophores were short and occasionally branched, and 26 to 35 (avg. 29) µm long. Phialides were terminal or lateral, mostly monophialidic. Conidia were hyaline, oblong-ellipsoidal or fusiform-ellipsoidal, 3 to 4 (avg. 3.9) µm long, and 1 to 1.5 (avg. 1.2) µm wide. Based on these characters, the isolates were identified as Phaeoacremonium venezuelense L. Mostert, Summerb. & Crous (2,3). DNA sequencing of a fragment of the beta-tubulin gene of the isolate 9.3 using primers T1 and Bt2b (GenBank Accession No. KF765487) matched P. venezuelense GenBank accession HQ605026. Pathogenicity tests were conducted using isolate 9.3. Ten 2-year-old apricot trees of cv. Galta Rotja grown in pots were wounded in two branches with a 8-mm cork borer. A 5-mm mycelium PDA plug from a 2-week-old culture was placed in the wound before being wrapped with Parafilm. Ten control plants were inoculated with 5-mm non-colonized PDA plugs. Plants were maintained in a greenhouse at 25 to 30°C. Within 5 months, shoots on all Phaeoacremonium-inoculated branches had weak growth with chlorosis of leaves and there were black streaks in the xylem vessels. The vascular necroses that developed on the inoculated plants were 5.5 ± 0.6 cm long, significantly greater than those on the control plants (P < 0.01). Control plants did not show any symptoms. The fungus was re-isolated from discolored tissue of all inoculated cuttings, completing Koch's postulates. P. venezuelense was reported as a pathogen of grapevines in Algeria (1) and South Africa (2) and, to our knowledge, this is the first report of P. venezuelense associated with wood decay of apricot trees in Spain or any country in the world. References: (1) A. Berraf-Tebbal et al. Phytopathol. Mediterr. 50:S86, 2011. (2) L. Mostert et al. J. Clin. Microbiol. 43:1752, 2005. (3) L. Mostert et al. Stud. Mycol. 54:1, 2006.

12.
Phytopathology ; 103(10): 1058-68, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23777403

RESUMO

Early, specific, and accurate in planta detection and quantification of Verticillium dahliae are essential to prevent the spread of Verticillium wilt in olive using certified pathogen-free planting material and development of resistance. We comparatively assessed the accuracy, specificity, and efficiency of eight real-time quantitative polymerase chain reaction protocols published since 2002 for the specific detection and quantification of V. dahliae in various host plant species and in soil, using a background of DNAs extracted from olive roots, stems, and leaves. Results showed that some of those protocols were not specific for V. dahliae or were inhibited when using backgrounds other than water. Ranking of protocols according to a weighted score system placed protocols TAQ (based on intergenic spacer ribosomal DNA target gene) and SYBR-4 (based on the ß-tubulin 2 target gene) first in sensitivity and efficiency for the quantification of V. dahliae DNA in small amounts and different types of olive tissues (root and stem) tested. Use of TAQ and SYBR-4 protocols allowed accurate quantification of V. dahliae DNA regardless of the background DNA, with a detection limit being fixed at a cycle threshold of 36 (≈18 fg for SYBR-4 and 15 fg for TAQ) of V. dahliae. The amount of DNA from defoliating (D) and nondefoliating (ND) V. dahliae pathotypes was monitored in Verticillium wilt-resistant 'Frantoio' olive using the TAQ and SYBR-4 protocols. In the infection bioassay, higher amounts of D V. dahliae DNA were measured in olive stems, whereas the average amount of fungal DNA in roots was higher for ND-infected plants than D-infected ones. Overall, V. dahliae DNA amounts in all olive tissues tested tended to slightly decrease or remain stable by the end of the experiment (35 days after inoculation). The SYBR-4 and TAQ protocols further enabled detection of V. dahliae in tissues of symptomless plants, suggesting that both techniques can be useful for implementing certification schemes of pathogen-free planting material as well as helpful tools in breeding resistance to V. dahliae in olive.


Assuntos
Olea , Verticillium , Olea/microbiologia , Doenças das Plantas/microbiologia , Raízes de Plantas/microbiologia , Reação em Cadeia da Polimerase em Tempo Real , Tubulina (Proteína)/genética , Verticillium/genética
13.
Persoonia ; 28: 1-13, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23105149

RESUMO

Severe decline of almond trees has recently been observed in several orchards on the island of Mallorca (Balearic Islands, western Mediterranean Sea). However, the identity of the causal agents has not yet been investigated. Between August 2008 and June 2010, wood samples from branches of almond trees showing internal necroses and brown to black vascular streaking were collected in the Llevant region on the island of Mallorca. Several fungal species were subsequently isolated from the margin between healthy and symptomatic tissue. Five species of Botryosphaeriaceae (namely Botryosphaeria dothidea, Diplodia olivarum, D. seriata, Neofusicoccum australe and N. parvum), Eutypa lata, Phaeoacremonium iranianum and Phomopsis amygdali were identified based on morphology, culture characteristics and DNA sequence comparisons. Neofusicoccum parvum was the dominant species, followed by E. lata, D. olivarum and N. australe. First reports from almond include D. olivarum and Pm. iranianum. Two species are newly described, namely Collophora hispanica sp. nov. and Phaeoacremonium amygdalinum sp. nov.

14.
Plant Dis ; 96(9): 1381, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30727185

RESUMO

From 2007 to 2009, Cylindrocladiella-like isolates were recovered from grapevine (Vitis vinifera L.) roots with symptoms of black-foot disease in Spain, where the causal agents of this disease have been previously reported as Campylocarpon and Cylindrocarpon species (1,2). Three representative isolates were selected to confirm their identity: CPa1 and CPa2 from Asturias (northern Spain), and CPe523 from Cuenca (central Spain). Isolates were incubated on malt extract agar (MEA) and Spezieller Nährstoffarmer Agar (SNA) with carnation leaves (4) at 25°C for 10 days in darkness. On MEA, colonies developed light brown, cottony mycelium. On SNA, all three isolates produced chlamydospores in chains, and conidia were zero-to one-septate, but CPa1 and CPa2 produced longer conidia (10.4 to 18.9 [15.3] × 1.7 to 3.1 [2.4] µm) than CPe523 (6.4 to 12.3 [9.7] × 1.6 to 3.3 [2.4] µm). A fragment of the beta-tubulin gene from all isolates was sequenced with primers T1 and Bt2b (1) and deposited in GenBank (Accession Nos. JQ693133, JQ693134, and JQ693135). CPa1 and CPa2 showed high similarity (99%) to Cylindrocladiella parva (AY793486) and CPe523 showed high similarity (99%) to C. peruviana (AY793500), which is in agreement with the corresponding morphological features of these species (4). Pathogenicity tests were conducted with inoculum produced on wheat (Triticum aestivum L.) seed soaked for 12 h in 300 ml of distilled water and autoclaved three times. Inoculum was prepared by inoculating two fungal disks (8 mm in diameter) of a 2-week-old culture of each isolate grown on potato dextrose agar to wheat seed and incubation at 25°C for 4 weeks. One-month-old grapevine seedlings were planted individually in 220-cc pots filled with a potting medium of sterilized peat moss and 10 g of inoculum, and grown in the greenhouse at 25°C in a completely randomized design. Controls were inoculated with sterile, noninoculated wheat seed. There were six replicate plants per isolate, with an equal number of controls, and the experiment was repeated once. Symptoms developed in all plants by 20 days post-inoculation and consisted of reduced vigor, necrotic root lesions, and occasionally mortality, all of which resembled the symptoms from grapevines in the field from which the isolates were originally recovered. Mean shoot dry weights of inoculated plants (0.25, 0.16, and 0.28 g for CPa1, Cpa2, and CPa523, respectively) were significantly lower (P < 0.05) than that of the controls (0.74 g). Mean root dry weights of inoculated plants (0.28, 0.16, and 0.29 g for CPa1, Cpa2, and CPa523, respectively) were also significantly lower (P < 0.05) than that of the controls (0.68 g). Isolates recovered from the roots of inoculated plants were identical morphologically and molecularly to C. parva and C. peruviana, thereby satisfying Koch's postulates. No symptoms were observed on the control plants. These Cylindrocladiella spp. have been reported from nurseries or vineyards in South Africa and New Zealand (3). To our knowledge, this is the first report of C. parva and C. peruviana associated with black-foot disease of grapevine in Spain, and in Europe. References: (1) S. Alaniz et al. Plant Dis. 91:1187, 2007. (2) S. Alaniz et al. Plant Dis. 95:1028, 2011. (3) E. E. Jones et al. Plant Dis. 96:144, 2012. (4) L. Lombard et al. Mycol. Progress DOI 10.1007/s11557-011-0799-1, 2012.

15.
Plant Dis ; 95(7): 803-810, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30731737

RESUMO

Weeds were sampled in grapevine rootstock mother fields, open-root field nurseries, and commercial vineyards of Albacete, Alicante, Castellón, Murcia, and Valencia provinces in Spain between June 2009 and June 2010 and evaluated as potential hosts of black-foot and Petri disease pathogens. Isolations were conducted in the root system and internal xylem tissues for black-foot and Petri disease pathogens, respectively. Cylindrocarpon macrodidymum was successfully isolated from the roots of 15 of 19 weed families evaluated and 26 of 52 weed species. Regarding Petri disease pathogens, one isolate of Phaeomoniella chlamydospora was obtained from Convolvulus arvensis, and three isolates of Cadophora luteo-olivacea were obtained from Bidens subalternans, Plantago coronopus, and Sonchus oleraceus. Pathogenicity tests showed that Cylindrocarpon macrodidymum isolates obtained from weeds were able to induce typical black-foot disease symptoms. When inoculated in grapevines, isolates of Cadophora luteo-olivacea and Phaeomoniella chlamydospora were also shown to be pathogenic on grapevine cuttings. Our ability to recover grapevine pathogens from vineyard weeds and to demonstrate pathogenicity of recovered strains on grape suggests that these weeds may serve as a source of inoculum for infection of grapevine.

16.
Plant Dis ; 95(5): 615, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-30731958

RESUMO

In September 2009, symptoms of grapevine (Vitis vinifera L.) decline were observed on 3-year-old grapevines in a vineyard in Roquetas de Mar (Almeria Province, southern Spain). Affected vines were weak with reduced foliage and chlorotic leaves. Black spots and dark streaking of the xylem vessels could be seen in cross- or longitudinal sections of the rootstock trunk. Symptomatic plants were collected and sections (10 cm long) were cut from the basal end of the rootstocks, washed under running tap water, surface disinfested for 1 min in a 1.5% sodium hypochlorite solution, and washed twice with sterile distilled water. The sections were split longitudinally and small pieces of discolored tissues were plated onto malt extract agar (MEA) supplemented with 0.5 g liter-1 of streptomycin sulfate. Dishes were incubated at 25 to 26°C in the dark for 14 to 21 days, and all colonies were transferred to potato dextrose agar (PDA). A Phaeoacremonium sp. was consistently isolated from necrotic tissues. Single conidial isolates were obtained and grown on PDA and MEA in the dark at 25°C for 2 to 3 weeks until colonies produced spores (2). Colonies were grayish brown on PDA and dark brown on MEA. Conidiophores were short and unbranched and 11.5 to 46 (25.5) µm long. Phialides were often polyphialidic. Conidia were hyaline, oblong-ellipsoidal or allantoid, 2.5 to 5 (4.2) µm long, and 1 to 1.7 (1.2) µm wide. On the basis of these characters, the isolates were identified as Phaeoacremonium krajdenii L. Mostert, Summerb. & Crous (1,2). DNA sequencing of a fragment of the beta-tubulin gene of the isolate (Pkr-1) using primers T1 and Bt2b (GenBank Accession No. HM637892) matched P. krajdenii GenBank Accession No. AY579330. Pathogenicity tests were conducted using isolate Pkr-1. Ten 1-year-old callused and rooted cuttings of 110 R rootstock grown in pots with sterile peat were wounded at the uppermost internode with an 8-mm cork borer. A 5-mm mycelium PDA plug from a 2-week-old culture was placed in the wound before being wrapped with Parafilm. Ten control plants were inoculated with 5-mm noncolonized PDA plugs. Plants were maintained in a greenhouse at 25 to 30°C. Within 3 months, shoots on all Phaeoacremonium-inoculated cuttings had weak growth with small leaves and short internodes and there were black streaks in the xylem vessels. The vascular necroses that developed on the inoculated plants were 5.5 ± 1.2 cm long, significantly greater than those on the control plants (P < 0.01). Control plants did not show any symptoms. The fungus was reisolated from discolored tissue of all inoculated cuttings, completing Koch's postulates. P. krajdenii has a worldwide distribution, although these reports are from human infections (1). P. krajdenii was first reported as a pathogen of grapevines in South Africa (1). To our knowledge, this is the first report of P. krajdenii causing young grapevine decline in Spain or any country in Europe. References: (1) L. Mostert et al. J. Clin. Microbiol. 43:1752, 2005. (2) L. Mostert et al. Stud. Mycol. 54:1, 2006.

18.
Plant Dis ; 95(8): 1028, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30732098

RESUMO

In May 2008, symptoms of black foot disease were observed on 8-year-old grapevines (Vitis vinifera L.) cv. Garnacha in Albuñol (Granada Province, southern Spain). Affected plants showed delayed budding with low vigor. Roots showed black discoloration and necrosis of wood tissues. Root fragments were cut, washed under running tap water, surface sterilized for 1 min in a 1.5% sodium hypochlorite solution, and washed twice with sterile distilled water. Small pieces of discolored or necrotic tissues were plated onto potato dextrose agar (PDA) supplemented with 0.5 g liter-1 of streptomycin sulfate. Plates were incubated at 25°C in the dark for 10 days and all colonies were transferred to PDA. A Cylindrocarpon-like fungus was consistently isolated from necrotic root tissues. Single conidial isolates were obtained and grown on PDA and Spezieller Nährstoffarmer Agar (SNA) and incubated at 25°C for 10 days in darkness. On PDA, the isolates developed white, thick, and cottony to felty abundant mycelium. On SNA, all isolates produced slightly to moderately curved one-septate (22.5-) 25.6 (-27.5) × (5-) 5.63 (-6.25) µm, two-septate (30-) 36.1 (-45) × (6.25-) 7.08 (-7.5) µm, three-septate (37.5-) 47.9 (-52.5) × (6.25-) 7.5 (-8.75) µm, four-septate (47.5-) 53.3 (-62.5) × (7.5-) 7.89 (-8.75) µm, and five-septate (52.5-) 61.8 (-67.5) × (7.5-) 8 (-8.75) µm macroconidia. Microconidia were not observed. DNA sequence of the rDNA internal transcribed spacer region (ITS) was obtained for isolate Cf-270 and deposited in GenBank (Accession No. HQ441249). This sequence showed high similarity (99%) to the sequence of Campylocarpon fasciculare Schroers, Halleen & Crous (GenBank Accession No. AY677303), in agreement with morphological features (1). Pathogenicity tests were conducted with inoculum produced on wheat (Triticum aestivum L.) seeds that were soaked for 12 h in flasks filled with distilled water. Each flask contained 300 ml of seeds that were subsequently autoclaved three times after excess water was drained. Two fungal disks of a 2-week-old culture of C. fasciculare (isolate Cf-270) grown on PDA were placed aseptically in each flask. The flasks were incubated at 25°C for 4 weeks and shaken once a week to avoid clustering of inoculum. Plastic pots (220 cm3) were filled with a mixture of sterilized peat moss and 10 g of inoculum per pot. One-month-old grapevine seedlings were planted individually in each pot and placed in a greenhouse at 25 to 30°C in a completely randomized design. Control plants were inoculated with sterile uninoculated seeds. Six replicates (each one in individual pots) were used, with an equal number of control plants. The experiment was repeated. Symptoms developed on all plants 20 days after inoculation and consisted in reduced vigor, interveinal chlorosis and necrosis of the leaves, necrotic root lesions with a reduction in root biomass, and plant death. The fungus was reisolated from the roots of affected seedlings and identified as C. fasciculare, completing Koch's postulates. No symptoms were observed on the control plants. Black foot disease of grapevines can be caused by different species of Cylindrocarpon and Campylocarpon. C. fasciculare was first reported in South Africa in 2004 (1). To our knowledge, this is the first report of C. fasciculare causing black foot disease of grapevine in Spain as well as other countries in Europe. Reference: (1) F. Halleen et al. Stud. Mycol. 50:431, 2004.

19.
Plant Dis ; 93(9): 964, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30754560

RESUMO

In 2008, four isolates of Phaeoacremonium, morphologically and genetically different from known Phaeoacremonium spp. in Spain, were isolated from rootstocks of young grapevine (Vitis vinifera) plants showing Petri disease symptoms including low vigor, reduced foliage, and dark streaking of the xylem in Badajoz Province (western Spain; cv. Syrah on SO4 rootstock), Tarragona Province (eastern Spain; cv. Garnacha on 161 49 C rootstock), and Balearic Islands (eastern Spain; cv. Tempranillo on Rupestris de Lot rootstock). Single-conidial isolates were obtained and grown on potato dextrose agar (PDA) and malt extract agar (MEA) at 25°C for 2 to 3 weeks in the dark until colonies sporulated (3). Identification was based on morphological characteristics (1-3). Phaeoacremonium inflatipes W. Gams, Crous & M. J. Wingf. and P. iranianum L. Mostert, Gräf., W. Gams & Crous were detected in Badajoz Province and P. sicilianum Essakhi, Mugnai, Surico & Crous in Tarragona Province and Balearic Islands. Colonies of P. inflatipes were gray on PDA and gray-brown on MEA. Conidiophores were branched, 15 to 37 (mean 25) µm long. Conidia were hyaline, oblong-ellipsoidal or obovoid, 3 to 5.5 (mean 4) µm long, and 1.2 to 1.9 (mean 1.6) µm wide. Colonies of P. iranianum were brownish gray on PDA and pale brown on MEA. Conidiophores were unbranched and 18 to 47.5 (mean 29) µm long. Conidia were hyaline, oblong-ellipsoidal, 3 to 5 (mean 4) µm long, and 1 to 1.8 (mean 1.5) µm wide. Colonies of P. sicilianum were pale brown on PDA and brown to pale orange on MEA. Conidiophores were branched and 13 to 55 (mean 32.5) µm long. Conidia were hyaline, allantoid, 3 to 8.5 (mean 6) µm long, and 1.5 to 2 (mean 1.8) µm wide. Identity of isolates Pin-2, Pir-4, Psi-1, and Psi-2 was confirmed by sequencing a fragment of the beta-tubulin gene with primers T1 and Bt2b (P. inflatipes, isolate Pin-2: GenBank Accession No. FJ872407, 100% similarity to Accession No. AY579323; P. iranianum, isolate Pir-4: GenBank Accession No. FJ872406, 99% similarity to Accession No. EU128077; P. sicilianum isolates Psi-1 and Psi-2: GenBank Accession Nos. FJ872408 and No. FJ872409, 100% similarity to Accession No. EU863489). Pathogenicity tests were conducted using Pin-2, Pir-4, and Psi-1 isolates. One-year-old callused and rooted cuttings of 110 R rootstock cultivated in sterile peat were wounded at the uppermost internode with an 8-mm cork borer. An 8-mm mycelium plug from a 2-week-old culture was placed into the wound. Wounds were wrapped with Parafilm. Ten cuttings per fungal isolate were used. Ten control plants were inoculated with 8-mm noncolonized PDA plugs. Plants were maintained in a greenhouse at 25°C. Within 2 months, all Phaeoacremonium-inoculated cuttings exhibited shoots with poor growth, small leaves, short internodes, and black streaks in the xylem. The mean shoot weight per plant was 1.8 g in P. inflatipes-inoculated plants, 1.9 g in P. iranianum-inoculated plants, and 1.6 g in P. sicilianum-inoculated plants, all lower than the control treatment (6.8 g). Control plants did not show any symptoms. All fungal species were reisolated from wood of all inoculated cuttings, completing Koch's postulates. Their identity was confirmed with the methods described above. To our knowledge, this is the first report of P. inflatipes, P. iranianum, and P. sicilianum causing Petri disease in Spain. References: (1) P. W. Crous et al. Mycologia 88:786, 1996. (2) S. Essakhi et al. Persoonia 21:119, 2008. (3) L. Mostert et al. Stud. Mycol. 54:1, 2006.

20.
Plant Dis ; 93(2): 200, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30764121

RESUMO

Since 2005, symptoms of grapevine decline have been observed on 4- to 8-month-old grapevines (cvs. Red globe and Crimson) grafted onto 1103 P rootstock in Ica and Pisco valleys in southern Peru. Affected plants exhibited weak growth, interveinal chlorosis, necrosis and wilting of leaves, and death. Dark brown-to-black streaking of the xylem was seen when transverse or longitudinal cuts were made in the trunk and shoots. Symptomatic plants were collected and sections (5 cm long) were cut from the zone between the rootstock and the scion, surface sterilized for 1 min in a 1.5% sodium hypochlorite solution, and washed twice with sterile distilled water. The sections were split longitudinally, and small pieces of discolored tissues were placed onto potato dextrose agar (PDA) supplemented with oxytetracycline (500 mg liter-1). Plates were incubated at 25°C in the dark for 15 days. A Phaeoacremonium sp. was consistently isolated from necrotic tissues. Single conidial isolates were obtained and grown on PDA and malt extract agar (MEA) in the dark at 25°C for 3 weeks until colonies produced spores (3). Colonies were brown on PDA and olive brown on MEA. Conidiophores were branched, 27.5 to 67.5 (42.5) µm long, and often consisting of a single phialide. Conidia were hyaline, oblong ellipsoidal, 2.5 to 4.5 (3.6) µm long, and 1.2 to 1.9 (1.6) µm wide. On the basis of these characteristics, the isolates were identified as Phaeoacremonium parasiticum (Ajello, Georg & C.J.K Wang) W. Gams, Crous & M.J. Wingf. (teleomorph Togninia parasitica L. Mostert, W. Gams & Crous) (2,3). Identity of isolate Ppa-1 was confirmed by PCR-restriction fragment length polymorphism of the internal transcribed spacer region (Phaeoacremonium-specific primers Pm1-Pm2) with the restriction enzymes BssKI, EcoO109I, and HhaI (1). Additionally, the beta-tubulin gene fragment (primers T1 and Bt2b) of this isolate was sequenced (GenBank Accession No. FJ151015). The sequence was identical to the sequence of P. parasiticum (GenBank Accession No. AY328379). Pathogenicity tests were conducted using the isolate Ppa-1. Approximately 20 µl of a suspension containing 103 conidia ml-1 was injected into the pith of four nodes on each of 10 dormant, unrooted, 15 cm long cuttings of cv. Red Globe. Four nodes on each of 10 cuttings were used as controls and injected with an equal volume of sterile distilled water. Inoculation points were covered with Parafilm. The cuttings were planted in plastic pots and maintained at 24 ± 3°C in diffuse light, watering as needed. Within 2 months of inoculation, all P. parasicitum-inoculated cuttings exhibited shoots with very poor growth with small leaves and short internodes. In the xylem vessels, black streaks identical to symptoms observed in declining vines in the vineyard were observed. Control plants did not show any of these symptoms. The fungus was reisolated from internal tissues of symptomatic shoots of all inoculated cuttings but not from the control shoots. To our knowledge, this is the first report of P. parasiticum causing young grapevine decline in Peru. References: (1) A. Aroca and R. Raposo. Appl. Environ. Microbiol. 73:2911, 2007. (2) P. W. Crous et al. Mycology 88:786, 2006. (3) L. Mostert et al. Stud. Mycol. 54:1, 2006.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...