Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
FEBS J ; 286(22): 4494-4508, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31276306

RESUMO

Two variants of the enzyme family pyruvate:ferredoxin oxidoreductase (PFOR), derived from the anaerobic sulfate-reducing bacterium Desulfovibrio africanus and the extremophilic crenarchaeon Sulfolobus acidocaldarius, respectively, were evaluated for their capacity to fixate CO2 in vitro. PFOR reversibly catalyzes the conversion of acetyl-CoA and CO2 to pyruvate using ferredoxin as redox partner. The oxidative decarboxylation of pyruvate is thermodynamically strongly favored, and most previous studies only considered the oxidative direction of the enzyme. To assay the pyruvate synthase function of PFOR during reductive carboxylation of acetyl-CoA is more challenging and requires to maintain the reaction far from equilibrium. For this purpose, a biochemical assay was established where low-potential electrons were introduced by photochemical reduction of EDTA/deazaflavin and the generated pyruvate was trapped by chemical derivatization with semicarbazide. The product of CO2 fixation could be detected as pyruvate semicarbazone by HPLC-MS. In a combinatorial approach, both PFORs were tested with ferredoxins from different sources. The pyruvate semicarbazone product could be detected with low-potential ferredoxins of the green sulfur bacterium Chlorobium tepidum and of S. acidocaldarius whereas CO2 fixation was not supported by the native ferredoxin of D. africanus. Methylviologen as an artificial electron carrier also allowed CO2 fixation. For both enzymes, the results are the first demonstration of CO2 fixation in vitro. Both enzymes exhibited high stability in the presence of oxygen during purification and storage. In conclusion, the employed PFOR enzymes in combination with non-native ferredoxin cofactors might be promising candidates for further incorporation in biocatalytic CO2 conversion. ENZYMES: EC1.2.7.1. Pyruvate:Ferredoxin Oxidoreductase.


Assuntos
Proteínas Arqueais/metabolismo , Proteínas de Bactérias/metabolismo , Dióxido de Carbono/metabolismo , Desulfovibrio/enzimologia , Piruvato Sintase/metabolismo , Sulfolobus/enzimologia , Proteínas Arqueais/química , Proteínas Arqueais/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Dinitrocresóis/química , Ácido Edético/química , Elétrons , Oxirredução , Paraquat/química , Piruvato Sintase/química , Piruvato Sintase/genética , Semicarbazidas/química
2.
Biotechnol Bioeng ; 111(4): 734-47, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24285380

RESUMO

Microaerobic (oxygen-limited) conditions are critical for inducing many important microbial processes in industrial or environmental applications. At very low oxygen concentrations, however, the process performance often suffers from technical limitations. Available dissolved oxygen measurement techniques are not sensitive enough and thus control techniques, that can reliable handle these conditions, are lacking. Recently, we proposed a microaerobic process control strategy, which overcomes these restrictions and allows to assess different degrees of oxygen limitation in bioreactor batch cultivations. Here, we focus on the design of a control strategy for the automation of oxygen-limited continuous cultures using the microaerobic formation of photosynthetic membranes (PM) in Rhodospirillum rubrum as model phenomenon. We draw upon R. rubrum since the considered phenomenon depends on the optimal availability of mixed-carbon sources, hence on boundary conditions which make the process performance challenging. Empirically assessing these specific microaerobic conditions is scarcely practicable as such a process reacts highly sensitive to changes in the substrate composition and the oxygen availability in the culture broth. Therefore, we propose a model-based process control strategy which allows to stabilize steady-states of cultures grown under these conditions. As designing the appropriate strategy requires a detailed knowledge of the system behavior, we begin by deriving and validating an unstructured process model. This model is used to optimize the experimental conditions, and identify properties of the system which are critical for process performance. The derived model facilitates the good process performance via the proposed optimal control strategy. In summary the presented model-based control strategy allows to access and maintain microaerobic steady-states of interest and to precisely and efficiently transfer the culture from one stable microaerobic steady-state into another. Therefore, the presented approach is a valuable tool to study regulatory mechanisms of microaerobic phenomena in response to oxygen limitation alone. Biotechnol. Bioeng. 2014;111: 734-747. © 2013 Wiley Periodicals, Inc.


Assuntos
Aerobiose/fisiologia , Técnicas de Cultura de Células/métodos , Modelos Biológicos , Rhodospirillum rubrum/fisiologia , Biologia de Sistemas/métodos , Reatores Biológicos , Oxigênio/metabolismo , Reprodutibilidade dos Testes , Rhodospirillum rubrum/metabolismo
3.
BMC Microbiol ; 13: 189, 2013 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-23927486

RESUMO

BACKGROUND: The facultative anoxygenic photosynthetic bacterium Rhodospirillum rubrum exhibits versatile metabolic activity allowing the adaptation to rapidly changing growth conditions in its natural habitat, the microaerobic and anoxic zones of stagnant waters. The microaerobic growth mode is of special interest as it allows the high-level expression of photosynthetic membranes when grown on succinate and fructose in the dark, which could significantly simplify the industrial production of compounds associated with PM formation. However, recently we showed that PM synthesis is no longer inducible when R. rubrum cultures are grown to high cell densities under aerobic conditions. In addition a reduction of the growth rate and the continued accumulation of precursor molecules for bacteriochlorophyll synthesis were observed under high cell densities conditions. RESULTS: In the present work, we demonstrate that the cell density-dependent effects are reversible if the culture supernatant is replaced by fresh medium. We identified six N-acylhomoserine lactones and show that four of them are produced in varying amounts according to the growth phase and the applied growth conditions. Further, we demonstrate that N-acylhomoserine lactones and tetrapyrrole compounds released into the growth medium affect the growth rate and PM expression in high cell density cultures. CONCLUSIONS: In summary, we provide evidence that R. rubrum possesses a Lux-type quorum sensing system which influences the biosynthesis of PM and the growth rate and is thus likely to be involved in the phenotypes of high cell density cultures and the rapid adaptation to changing environmental conditions.


Assuntos
Fotossíntese , Percepção de Quorum , Rhodospirillum rubrum/fisiologia , Acil-Butirolactonas/metabolismo , Aerobiose , Anaerobiose , Meios de Cultura/química , Escuridão , Frutose/metabolismo , Membranas Intracelulares/metabolismo , Rhodospirillum rubrum/crescimento & desenvolvimento , Rhodospirillum rubrum/metabolismo , Ácido Succínico/metabolismo
4.
Biotechnol Bioeng ; 110(2): 573-85, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23042159

RESUMO

Bacterial growth under oxygen-limited (microaerobic) conditions is often accompanied by phenomena of great interest for fundamental research and industrial application. The microaerobic lifestyle of anoxygenic photosynthetic bacteria like Rhodospirillum rubrum harbors such a phenomenon, as it allows the formation of photosynthetic membranes and related interesting products without light. However, due to the technical difficulties in process control of microaerobic cultivations and the limited sensitivity of available oxygen sensors, the analysis of microaerobic growth and physiology is still underrepresented in current research. The main focus of the present study was to establish an experimental set-up for the systematic study of physiological processes, associated with the growth of R. rubrum under microaerobic conditions in the dark. For this purpose, we introduce a robust and reliable microaerobic process control strategy, which applies the culture redox potential (CRP) for assessing different degrees of oxygen limitation in bioreactor cultivations. To describe the microaerobic growth behavior of R. rubrum cultures for each of these defined CRP reduction steps, basic growth parameters were experimentally determined. Flux variability analysis provided an insight into the metabolic activity of the TCA cycle and implied its connection to the respiratory capacity of the cells. In this context, our results suggest that microaerobic growth of R. rubrum can be described as an oxygen-activated cooperative mechanism. The present study thus contributes to the investigation of metabolic and regulatory events responsible for the redox-sensitive formation of photosynthetic membranes in facultative photosynthetic bacteria. Furthermore, the introduced microaerobic cultivation setup should be generally applicable for any microbial system of interest which can be cultivated in common stirred-tank bioreactors.


Assuntos
Reatores Biológicos/microbiologia , Consumo de Oxigênio/fisiologia , Rhodospirillum rubrum/metabolismo , Aerobiose , Biotecnologia , Dióxido de Carbono , Técnicas de Cultura de Células/métodos , Membrana Celular/metabolismo , Ciclo do Ácido Cítrico , Fermentação , Oxirredução , Oxigênio , Fotossíntese , Biologia de Sistemas
5.
Appl Environ Microbiol ; 78(20): 7205-15, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22865070

RESUMO

The biosynthesis of the major carotenoid spirilloxanthin by the purple nonsulfur bacterium Rhodospirillum rubrum is thought to occur via a linear pathway proceeding through phytoene and, later, lycopene as intermediates. This assumption is based solely on early chemical evidence (B. H. Davies, Biochem. J. 116:93-99, 1970). In most purple bacteria, the desaturation of phytoene, catalyzed by the enzyme phytoene desaturase (CrtI), leads to neurosporene, involving only three dehydrogenation steps and not four as in the case of lycopene. We show here that the chromosomal insertion of a kanamycin resistance cassette into the crtC-crtD region of the partial carotenoid gene cluster, whose gene products are responsible for the downstream processing of lycopene, leads to the accumulation of the latter as the major carotenoid. We provide spectroscopic and biochemical evidence that in vivo, lycopene is incorporated into the light-harvesting complex 1 as efficiently as the methoxylated carotenoids spirilloxanthin (in the wild type) and 3,4,3',4'-tetrahydrospirilloxanthin (in a crtD mutant), both under semiaerobic, chemoheterotrophic, and photosynthetic, anaerobic conditions. Quantitative growth experiments conducted in dark, semiaerobic conditions, using a growth medium for high cell density and high intracellular membrane levels, which are suitable for the conventional industrial production in the absence of light, yielded lycopene at up to 2 mg/g (dry weight) of cells or up to 15 mg/liter of culture. These values are comparable to those of many previously described Escherichia coli strains engineered for lycopene production. This study provides the first genetic proof that the R. rubrum CrtI produces lycopene exclusively as an end product.


Assuntos
Vias Biossintéticas/genética , Biotecnologia/métodos , Carotenoides/metabolismo , Engenharia Metabólica , Rhodospirillum rubrum/metabolismo , Aerobiose , Anaerobiose , Meios de Cultura/química , Escuridão , Resistência a Canamicina , Licopeno , Família Multigênica , Mutagênese Insercional
6.
Enzyme Microb Technol ; 50(4-5): 238-46, 2012 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-22418264

RESUMO

During fermentative metabolism, carbon dioxide fixation plays a key role in many bacteria regarding growth and production of organic acids. The present contribution, dealing with the facultative photosynthetic bacterium Rhodospirillum rubrum, reveals not only the strong influence of ambient carbon dioxide on the fermentative break-down of fructose but also a high impact on aerobic growth with fructose as sole carbon source. Both growth rates and biomass yield increased with increasing carbon dioxide supply in chemoheterotrophic aerobic cultures. Furthermore, intracellular metabolite concentration measurements showed almost negligible concentrations of the tricarboxylic acid cycle intermediates succinate, fumarate and malate under aerobic growth, in contrast to several metabolites of the glycolysis. In addition, we present a dual phase fed-batch process, where an aerobic growth phase is followed by an anaerobic production phase. The biosynthesis of bacteriochlorophyll and the secretion of organic acids were both affected by the carbon dioxide supply, the pH value and by the cell density at the time of switching from aerobic to anaerobic conditions. The formation of pigmented photosynthetic membranes and the amount of bacteriochlorophyll were inversely correlated to the secretion of succinate. Accounting the high biotechnological potential of R. rubrum, optimization of carbon dioxide supply is important because of the favored application of fructose-containing fermentable feedstock solutions in bio-industrial processes.


Assuntos
Bacterioclorofilas/metabolismo , Dióxido de Carbono/farmacologia , Frutose/metabolismo , Rhodospirillum rubrum/crescimento & desenvolvimento , Succinatos/metabolismo , Aerobiose , Anaerobiose , Biomassa , Reatores Biológicos , Biotecnologia/métodos , Dióxido de Carbono/metabolismo , Ciclo do Ácido Cítrico , Meios de Cultura/química , Concentração de Íons de Hidrogênio , Rhodospirillum rubrum/efeitos dos fármacos , Rhodospirillum rubrum/metabolismo
7.
BMC Syst Biol ; 5: 150, 2011 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-21943387

RESUMO

BACKGROUND: Purple nonsulfur bacteria (PNSB) are facultative photosynthetic bacteria and exhibit an extremely versatile metabolism. A central focus of research on PNSB dealt with the elucidation of mechanisms by which they manage to balance cellular redox under diverse conditions, in particular under photoheterotrophic growth. RESULTS: Given the complexity of the central metabolism of PNSB, metabolic modeling becomes crucial for an integrated analysis of the accumulated biological knowledge. We reconstructed a stoichiometric model capturing the central metabolism of three important representatives of PNSB (Rhodospirillum rubrum, Rhodobacter sphaeroides and Rhodopseudomonas palustris). Using flux variability analysis, the model reveals key metabolic constraints related to redox homeostasis in these bacteria. With the help of the model we can (i) give quantitative explanations for non-intuitive, partially species-specific phenomena of photoheterotrophic growth of PNSB, (ii) reproduce various quantitative experimental data, and (iii) formulate several new hypotheses. For example, model analysis of photoheterotrophic growth reveals that--despite a large number of utilizable catabolic pathways--substrate-specific biomass and CO2 yields are fixed constraints, irrespective of the assumption of optimal growth. Furthermore, our model explains quantitatively why a CO2 fixing pathway such as the Calvin cycle is required by PNSB for many substrates (even if CO2 is released). We also analyze the role of other pathways potentially involved in redox metabolism and how they affect quantitatively the required capacity of the Calvin cycle. Our model also enables us to discriminate between different acetate assimilation pathways that were proposed recently for R. sphaeroides and R. rubrum, both lacking the isocitrate lyase. Finally, we demonstrate the value of the metabolic model also for potential biotechnological applications: we examine the theoretical capabilities of PNSB for photoheterotrophic hydrogen production and identify suitable genetic interventions to increase the hydrogen yield. CONCLUSIONS: Taken together, the metabolic model (i) explains various redox-related phenomena of the versatile metabolism of PNSB, (ii) delivers new hypotheses on the operation and relevance of several metabolic pathways, and (iii) holds significant potential as a tool for rational metabolic engineering of PNSB in biotechnological applications.


Assuntos
Hidrogênio/metabolismo , Modelos Biológicos , Rhodospirillaceae/metabolismo , Acetatos/metabolismo , Dióxido de Carbono/metabolismo , Redes e Vias Metabólicas , Oxirredução , Fotossíntese
8.
J Bacteriol ; 193(8): 1893-900, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21317329

RESUMO

The formation of intracytoplasmic photosynthetic membranes by facultative anoxygenic photosynthetic bacteria has become a prime example for exploring redox control of gene expression in response to oxygen and light. Although a number of redox-responsive sensor proteins and transcription factors have been characterized in several species during the last several years in some detail, the overall understanding of the metabolic events that determine the cellular redox environment and initiate redox signaling is still poor. In the present study we demonstrate that in Rhodospirillum rubrum, the amount of photosynthetic membranes can be drastically elevated by external supplementation of the growth medium with the low-molecular-weight thiol glutathione. Neither the widely used reductant dithiothreitol nor oxidized glutathione caused the same response, suggesting that the effect was specific for reduced glutathione. By determination of the extracellular and intracellular glutathione levels, we correlate the GSH/GSSG redox potential to the expression level of photosynthetic membranes. Possible regulatory interactions with periplasmic, membrane, and cytosolic proteins are discussed. Furthermore, we found that R. rubrum cultures excrete substantial amounts of glutathione to the environment.


Assuntos
Regulação Bacteriana da Expressão Gênica , Glutationa/metabolismo , Proteínas de Membrana/metabolismo , Organelas/metabolismo , Rhodospirillum rubrum/efeitos dos fármacos , Rhodospirillum rubrum/genética , Meios de Cultura/química , Ditiotreitol/metabolismo , Oxirredução
9.
Biotechnol Bioeng ; 105(4): 729-39, 2010 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-19882736

RESUMO

The potential of facultative photosynthetic bacteria as producers of photosynthetic pigments, vitamins, coenzymes and other valuable products has been recognized for decades. However, mass cultivation under photosynthetic conditions is generally inefficient due to the inevitable limitation of light supply when cell densities become very high. The previous development of a new cultivation process for maximal expression of photosynthetic genes under semi-aerobic dark conditions in common bioreactors offers a new perspective for utilizing the facultative photosynthetic bacterium Rhodospirillum rubrum for large-scale applications. Based on this cultivation system, the present study aimed in determining the maximal achievable cell density of R. rubrum in a bioreactor, thereby providing a major milestone on the way to industrial bioprocesses. As a starting point, we focus on aerobic growth due to higher growth rates and more facile process control under this condition, with the option to extend the process by an anaerobic production phase. Process design and optimization were supported by an unstructured computational process model, based on mixed-substrate kinetics. Key parameters for growth and process control were determined in shake-flask experiments or estimated by simulation studies. For fed-batch cultivation, a computer-controlled exponential feed algorithm in combination with a pH-stat element was implemented. As a result, a maximal cell density of 59 g cell dry weight (CDW) L(-1) was obtained, representing so far not attainable cell densities for photosynthetic bacteria. The applied exponential fed-batch methodology therefore enters a range which is commonly employed for industrial applications with microbial cells. The biochemical analysis of high cell density cultures revealed metabolic imbalances, such as the accumulation and excretion of tetrapyrrole intermediates of the bacteriochlorophyll biosynthetic pathway.


Assuntos
Reatores Biológicos , Rhodospirillum rubrum/crescimento & desenvolvimento , Escuridão , Frutose/metabolismo , Modelos Biológicos , Ácido Succínico/metabolismo
10.
J Bacteriol ; 190(14): 4912-21, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18487324

RESUMO

It is now well established that, for photosynthetic bacteria, the aerobic-to-microaerophilic transition activates the membrane-bound sensor kinase RegB, which subsequently phosphorylates the transcriptional activator RegA, thereby inducing elevated levels of intracellular photosynthetic membranes. The mechanism of RegB activation--in particular, the role of ubiquinone-10--is controversial at present. One problem here is that very limited quantitative in vivo data for the response of the ubiquinone redox state to different cultivation conditions exist. Here, we utilize Rhodospirillum rubrum to study the correlation of the quinone redox state to the expression level of photosynthetic membranes and determine an effective response function directly. Our results show that changes in the photosynthetic membrane levels between 50 and 95% of that maximally attainable are associated with only a twofold change in the ubiquinol/ubiquinone ratio and are not necessarily proportional to the total levels of either quinone or [NAD(+) + NADH]. There is no correlation between the redox potentials of the quinone and pyridine nucleotide pools. Hill function analysis of the photosynthetic membrane induction in response to the quinone redox state suggests that the induction process is highly cooperative. Our results are probably generally applicable to quinone redox regulation in bacteria.


Assuntos
Membrana Celular/metabolismo , Fotossíntese , Rhodospirillum rubrum/fisiologia , Ubiquinona/análise , Aerobiose , Proteínas de Bactérias/análise , Cromatografia Líquida de Alta Pressão , Complexos de Proteínas Captadores de Luz/análise , Espectrometria de Massas , NAD/análise , NADP/análise , Oxirredução , Rhodospirillum rubrum/química , Ubiquinona/análogos & derivados
11.
Mol Syst Biol ; 4: 156, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18197174

RESUMO

Purple non-sulfur bacteria (Rhodospirillaceae) have been extensively employed for studying principles of photosynthetic and respiratory electron transport phosphorylation and for investigating the regulation of gene expression in response to redox signals. Here, we use mathematical modeling to evaluate the steady-state behavior of the electron transport chain (ETC) in these bacteria under different environmental conditions. Elementary-modes analysis of a stoichiometric ETC model reveals nine operational modes. Most of them represent well-known functional states, however, two modes constitute reverse electron flow under respiratory conditions, which has been barely considered so far. We further present and analyze a kinetic model of the ETC in which rate laws of electron transfer steps are based on redox potential differences. Our model reproduces well-known phenomena of respiratory and photosynthetic operation of the ETC and also provides non-intuitive predictions. As one key result, model simulations demonstrate a stronger reduction of ubiquinone when switching from high-light to low-light conditions. This result is parameter insensitive and supports the hypothesis that the redox state of ubiquinone is a suitable signal for controlling photosynthetic gene expression.


Assuntos
Modelos Biológicos , Rhodospirillaceae/metabolismo , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Aerobiose/efeitos da radiação , Anaerobiose/efeitos da radiação , Simulação por Computador , Transporte de Elétrons/efeitos da radiação , Cinética , Luz , NAD/metabolismo , Rhodospirillaceae/crescimento & desenvolvimento , Rhodospirillaceae/efeitos da radiação
12.
Biotechnol Lett ; 30(3): 415-20, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17985082

RESUMO

Recombinant strains of Saccharomyces cerevisiae, producing hantavirus Puumala nucleocapsid protein for diagnostics and as a candidate vaccine were analyzed for uptake and excretion of intermediary metabolites during process optimization studies of fed-batch bioreactor cultures. Concentrations of glucose, maltose, galactose, pyruvate, acetaldehyde, ethanol, acetate, succinate and formaldehyde (used as a selection agent) were measured in the culture medium in order to find a metabolite pattern, indicative for the physiological state of the producer culture. When the inducer galactose was employed as a growth substrate, the metabolite profile of recombinant yeast cells was different from those of the non-recombinant original strain which excreted considerable amounts of metabolites with this substrate. In contrast, galactose-induced heterologous gene expression was indicated by the absence of excreted intermediary metabolites, except succinate. A model strain expressing a GFP fusion of hantavirus nucleocapsid protein differed in the excretion of metabolites from strains without GFP. In addition, the influence of alkali ions, employed for pH control is also demonstrated.


Assuntos
Microbiologia Industrial/métodos , Proteínas do Nucleocapsídeo/biossíntese , Orthohantavírus , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Reatores Biológicos , Proteínas Recombinantes de Fusão/biossíntese , Saccharomyces cerevisiae/crescimento & desenvolvimento
13.
Appl Environ Microbiol ; 69(11): 6577-86, 2003 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-14602616

RESUMO

The purple nonsulfur bacterium Rhodospirillum rubrum has been employed to study physiological adaptation to limiting oxygen tensions (microaerophilic conditions). R. rubrum produces maximal levels of photosynthetic membranes when grown with both succinate and fructose as carbon sources under microaerophilic conditions in comparison to the level (only about 20% of the maximum) seen in the absence of fructose. Employing a unique partial O(2) pressure (pO(2)) control strategy to reliably adjust the oxygen tension to values below 0.5%, we have used bioreactor cultures to investigate the metabolic rationale for this effect. A metabolic profile of the central carbon metabolism of these cultures was obtained by determination of key enzyme activities under microaerophilic as well as aerobic and anaerobic phototrophic conditions. Under aerobic conditions succinate and fructose were consumed simultaneously, whereas oxygen-limiting conditions provoked the preferential breakdown of fructose. Fructose was utilized via the Embden-Meyerhof-Parnas pathway. High levels of pyrophosphate-dependent phosphofructokinase activity were found to be specific for oxygen-limited cultures. No glucose-6-phosphate dehydrogenase activity was detected under any conditions. We demonstrate that NADPH is supplied mainly by the pyridine-nucleotide transhydrogenase under oxygen-limiting conditions. The tricarboxylic acid cycle enzymes are present at significant levels during microaerophilic growth, albeit at lower levels than those seen under fully aerobic growth conditions. Levels of the reductive tricarboxylic acid cycle marker enzyme fumarate reductase were also high under microaerophilic conditions. We propose a model by which the primary "switching" of oxidative and reductive metabolism is performed at the level of the tricarboxylic acid cycle and suggest how this might affect redox signaling and gene expression in R. rubrum.


Assuntos
Oxigênio/farmacologia , Fotossíntese/fisiologia , Rhodospirillum rubrum/crescimento & desenvolvimento , Rhodospirillum rubrum/metabolismo , Reatores Biológicos , Membrana Celular/metabolismo , Ciclo do Ácido Cítrico , Frutose/metabolismo , Regulação Bacteriana da Expressão Gênica , Modelos Biológicos , Dados de Sequência Molecular , Oxirredução , Fotossíntese/genética , Complexo de Proteínas do Centro de Reação Fotossintética/genética , Rhodospirillum rubrum/efeitos dos fármacos , Rhodospirillum rubrum/genética , Análise de Sequência de DNA , Ácido Succínico/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA