Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioresour Technol ; 393: 130115, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38013031

RESUMO

This paper aims to carry out an integrated Life Cycle Assessment (LCA) to evaluate the environmental performance of a novel thermochemical-biochemical biomass-to-liquid pathway for sustainable aviation and maritime biofuel production. Five scenarios are defined, consideringdifferent types of biomass feedstock and biorefinery locations, in different geographically dispersed European countries. The results indicate that the replacement of conventional aviation and maritime fuels with sustainable biofuels could reduce Greenhouse Gases (GHG) by 60-86%, based on feedstock type. When the renewable share in the electricity mix reaches 100% (in 2050), the GHG emissions will experience a great decrease (26% - 68%), compared to 2022 levels. The non-renewable energy consumption will also decrease (by 56% - 83%), with results strongly affected by the electricity mix of the European country considered. This study demonstrates that the deployment of biomass-to-jet/marine fuel pathways could favor the industrial adoption of circular economy strategies for transport biofuels production.


Assuntos
Aviação , Gases de Efeito Estufa , Animais , Biomassa , Efeito Estufa , Biocombustíveis/análise , Estágios do Ciclo de Vida
2.
J Environ Manage ; 348: 119234, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37844398

RESUMO

Anaerobic digestion has been proved to be a widely used and effective technology. The main challenge for the sustainable biogas industry is to find ways to efficiently recycle and utilize the anaerobic digestate. The conversion of digestion products into activated carbon seems to be an attractive way. Therefore, the present study focused on assessing the potential of digested solids as a promising source of activated carbon using a range of activators including KOH, ZnCl2 and H3PO4. The activated carbon prepared from digested solids was subjected to an activation process to investigate the physicochemical and surface properties of the resulting activated carbon. The results showed that KOH appeared to be the best activator for producing activated carbon from high silica precursors such as digested solids. The effectiveness of KOH activation can be attributed to the ability of K to readily form poorly layered compounds with carbon, as well as a significant increase in the number of porosities during KOH activation due to the violent reaction of KOH with C and the volatilization of the inorganic minerals in the digested char. The KOH activated sample had the lowest La and Lc, which means it had the theoretically largest specific surface area. This study provides experimental basis and theoretical guidance for the conversion of digested solids into high value-added activated carbon.


Assuntos
Carvão Vegetal , Resíduos Sólidos , Biocombustíveis , Porosidade , Reciclagem , Anaerobiose
3.
Int J Mol Sci ; 9(7): 1241-1258, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19325802

RESUMO

Technical specifications of solid biofuels are continuously improved towards the development and promotion of their market. Efforts in the Greek market are limited, mainly due to the climate particularity of the region, which hinders the growth of suitable biofuels. Taking also into account the increased oil prices and the high inputs required to grow most annual crops in Greece, cardoon (Cynara cardunculus L.) is now considered the most important and promising sources for solid biofuel production in Greece in the immediate future. The reason is that cardoon is a perennial crop of Mediterranean origin, well adapted to the xerothermic conditions of southern Europe, which can be utilized particularly for solid biofuel production. This is due to its minimum production cost, as this perennial weed may perform high biomass productivity on most soils with modest or without any inputs of irrigation and agrochemicals. Within this framework, the present research work is focused on the planning and analysis of different land use scenarios involving this specific energy crop and the combustion behaviour characterization for the solid products. Such land use scenarios are based on quantitative estimates of the crop'sproduction potential under specific soil-climatic conditions as well as the inputs required for its realization in comparison to existing conventional crops. Concerning its decomposition behaviour, devolatilisation and char combustion tests were performed in a non-isothermal thermogravimetric analyser (TA Q600). A kinetic analysis was applied and accrued results were compared with data already available for other lignocellulosic materials. The thermogravimetric analysis showed that the decomposition process of cardoon follows the degradation of other lignocellulosic fuels, meeting high burnout rates. This research work concludes that Cynara cardunculus, under certain circumstances, can be used as a solid biofuel of acceptable quality.

4.
J Air Waste Manag Assoc ; 57(10): 1178-89, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17972763

RESUMO

The 1999/31 Elemental Carbon Directive sets strict rules on the disposal of untreated municipal solid waste in the European Union countries and forces a reduction of the biodegradable quantities disposed off to landfills up to 35% of the amount produced in 1995 in the coming decade. More environmentally friendly waste management options shall be promoted under the framework of the Community Waste Strategy ([96] 399 Final). In this context, the production and thermal use of solid recovered fuels (SRFs), derived from nonhazardous bioresidues and mixed- and mono-waste streams, could be a key element in a future waste management system. Within the scope of the European Demonstration Project, RECOFUEL, SRF cocombustion was demonstrated in two large-scale lignite-fired coal boilers at RWE power station in Weisweiler, Germany. As a consequence of the high biogenic share of the cocombusted material, this approach can be considered beneficial following European Directive 2001/77/EC on electricity from renewable energy sources (directive). During the experimental campaign, the share of SRF in the overall thermal input was adjusted to approximately 2%, resulting into a feeding rate of approximately 25 t/hr. The measurement campaign included boiler measurements in different locations, fuel and ash sampling, and its characterization. The corrosion rates were monitored by dedicated corrosion probes. The overall results showed no significant influence of SRF cocombustion on boiler operation, emissions behavior, and residues quality for the thermal shares applied. Also, no effect of the increased chlorine concentration of the recovered fuel was observed in the flue gas path after the desulfurization unit.


Assuntos
Eliminação de Resíduos/métodos , Carbono/análise , Carbono/química , Carvão Mineral , Cinza de Carvão , União Europeia , Alemanha , Material Particulado/análise , Material Particulado/química , Eliminação de Resíduos/instrumentação , Eliminação de Resíduos/legislação & jurisprudência , Temperatura
5.
J Air Waste Manag Assoc ; 53(11): 1301-11, 2003 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-14649749

RESUMO

The thermal exploitation of wastewood with Greek lignite was investigated by performing tests in a laboratory-scale fluidized bed reactor, a 1-MW(th) semi-industrial circulating fluidized bed combustor, and an industrial boiler. Blends of natural wood, demolition wood, railroad sleepers, medium-density fiberboard residues, and power poles with lignite were used, and the co-combustion efficiency and the effect of wastewood addition on the emitted pollutants were investigated. Carbon monoxide, sulfur dioxide, and oxides of nitrogen emissions were continuously monitored, and, during the industrial-scale tests, the toxic emissions (polychlorinated dibenzodioxins and dibenzofurans and heavy metals) were determined. Ash samples were analyzed for heavy metals in an inductively coupled plasma-atomic emission spectroscopy spectrophotometer. Problems were observed during the preparation of wastewood, because species embedded with different compounds, such as railway sleepers and demolition wood, were not easily treated. All wastewood blends were proven good fuels; co-combustion proceeded smoothly and homogeneous temperature and pressure profiles were obtained. Although some fluctuations were observed, low emissions of gaseous pollutants were obtained for all fuel blends. The metal element emissions (in the flue gases and the solid residues) were lower than the legislative limits. Therefore, wastewood co-combustion with lignite can be realized, provided that the fuel handling and preparation can be practically performed in large-scale installations.


Assuntos
Fontes de Energia Bioelétrica , Conservação de Recursos Energéticos , Lignina , Eliminação de Resíduos/métodos , Poluentes Ambientais/análise , Madeira
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...