Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Dalton Trans ; 51(33): 12476-12483, 2022 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-35904400

RESUMO

The previously reported potassium aluminyl complex [(BDI-H)Al-K+]2 was converted in Li+ or Na+ salts by a salt metathesis reaction with Li(BPh4) or Na(BPh4), respectively; BDI-H = dianionic [(DIPP)N-C(Me)C(H)-C(CH2)-N(DIPP)2-] and DIPP = 2,6-diisopropylphenyl. The Rb and Cs aluminyl complexes were obtained by reaction of (BDI)Al with RbC8 or CsC8; BDI = HC[C(Me)N(DIPP)]2. Crystal structures of two monomers, (BDI-H)Al-Li+·(Et2O)2 and (BDI-H)Al-Na+·(Et2O)(TMEDA), and four dimers [(BDI-H)Al-M+]2 (M = Li, Na, Rb, Cs) are discussed. Lewis base-free dimers [(BDI-H)Al-M+]2 crystallize either as slipped dimers (Li+, Na+) in which each Al center features only one Al-M contact or as a symmetric dimer (K+, Rb+, Cs+) in which the cation bridges both Al centers. The dimer with the largest cation (Cs+) shows Cs⋯CH2C interactions between dimers, resulting in a coordination polymer. AIM and charge analysis reveal highly ionic Al-M bonds with strong polarization of the Al lone-pair towards the smaller cation Li+ and Na+. The Al-M bonds become weaker from Li to Cs. Calculated dimerization energies suggest that in apolar solvents only complexes with the heavier metals Rb and Cs may be in a monomer-dimer equilibrium. This is confirmed by DOSY measurements in benzene. Dimeric aluminyl complexes with heavier alkali metals (K-Cs) react with benzene to give a double C-H activation in para-positions.

2.
Angew Chem Int Ed Engl ; 59(37): 15982-15986, 2020 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-32449816

RESUMO

The reagent RK [R=CH(SiMe3 )2 or N(SiMe3 )2 ] was expected to react with the low-valent (DIPP BDI)Al (DIPP BDI=HC[C(Me)N(DIPP)]2 , DIPP=2,6-iPr-phenyl) to give [(DIPP BDI)AlR]- K+ . However, deprotonation of the Me group in the ligand backbone was observed and [H2 C=C(N-DIPP)-C(H)=C(Me)-N-DIPP]Al- K+ (1) crystallized as a bright-yellow product (73 %). Like most anionic AlI complexes, 1 forms a dimer in which formally negatively charged Al centers are bridged by K+ ions, showing strong K+ ⋅⋅⋅DIPP interactions. The rather short Al-K bonds [3.499(1)-3.588(1) Å] indicate tight bonding of the dimer. According to DOSY NMR analysis, 1 is dimeric in C6 H6 and monomeric in THF, but slowly reacts with both solvents. In reaction with C6 H6 , two C-H bond activations are observed and a product with a para-phenylene moiety was exclusively isolated. DFT calculations confirm that the Al center in 1 is more reactive than that in (DIPP BDI)Al. Calculations show that both AlI and K+ work in concert and determines the reactivity of 1.

3.
Angew Chem Int Ed Engl ; 59(23): 9102-9112, 2020 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-32045078

RESUMO

Two series of bulky alkaline earth (Ae) metal amide complexes have been prepared: Ae[N(TRIP)2 ]2 (1-Ae) and Ae[N(TRIP)(DIPP)]2 (2-Ae) (Ae=Mg, Ca, Sr, Ba; TRIP=SiiPr3 , DIPP=2,6-diisopropylphenyl). While monomeric 1-Ca was already known, the new complexes have been structurally characterized. Monomers 1-Ae are highly linear while the monomers 2-Ae are slightly bent. The bulkier amide complexes 1-Ae are by far the most active catalysts in alkene hydrogenation with activities increasing from Mg to Ba. Catalyst 1-Ba can reduce internal alkenes like cyclohexene or 3-hexene and highly challenging substrates like 1-Me-cyclohexene or tetraphenylethylene. It is also active in arene hydrogenation reducing anthracene and naphthalene (even when substituted with an alkyl) as well as biphenyl. Benzene could be reduced to cyclohexane but full conversion was not reached. The first step in catalytic hydrogenation is formation of an (amide)AeH species, which can form larger aggregates. Increasing the bulk of the amide ligand decreases aggregate size but it is unclear what the true catalyst(s) is (are). DFT calculations suggest that amide bulk also has a noticeable influence on the thermodynamics for formation of the (amide)AeH species. Complex 1-Ba is currently the most powerful Ae metal hydrogenation catalyst. Due to tremendously increased activities in comparison to those of previously reported catalysts, the substrate scope in hydrogenation catalysis could be extended to challenging multi-substituted unactivated alkenes and even to arenes among which benzene.

4.
Angew Chem Int Ed Engl ; 58(43): 15496-15503, 2019 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-31465144

RESUMO

The low-valent ß-diketiminate complex (DIPP BDI)Al is stable in benzene but addition of catalytic quantities of [(DIPP BDI)CaH]2 at 20 °C led to (DIPP BDI)Al(Ph)H (DIPP BDI=CH[C(CH3 )N-DIPP]2 , DIPP=2,6-diisopropylphenyl). Similar Ca-catalyzed C-H bond activation is demonstrated for toluene or p-xylene. For toluene a remarkable selectivity for meta-functionalization has been observed. Reaction of (DIPP BDI)Al(m-tolyl)H with I2 gave m-tolyl iodide, H2 and (DIPP BDI)AlI2 which was recycled to (DIPP BDI)Al. Attempts to catalyze this reaction with Mg or Zn hydride catalysts failed. Instead, the highly stable complexes (DIPP BDI)Al(H)M(DIPP BDI) (M=Mg, Zn) were formed. DFT calculations on the Ca hydride catalyzed arene alumination suggest that a similar but more loosely bound complex is formed: (DIPP BDI)Al(H)Ca(DIPP BDI). This is in equilibrium with the hydride bridged complex (DIPP BDI)Al(µ-H)Ca(DIPP BDI) which shows strongly increased electron density at Al. The combination of Ca-arene bonding and a highly nucleophilic Al center are key to facile C-H bond activation.

5.
Angew Chem Int Ed Engl ; 56(18): 5021-5025, 2017 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-28370950

RESUMO

While magnesium hydride complexes are generally stabilized by hard, bulky N-donor ligands, softer ligands with a broad variety of coordination modes are shown to efficiently adapt themselves to the large variety of Mg2+ centers in a growing magnesium hydride cluster. A P,N-chelating ligand is introduced that displays coordination modes between that of enamide, aza-allyl, and phosphinomethanide. Slight changes in the ligand bite angle have dramatic consequences for the structure type. The hitherto largest neutral magnesium hydride clusters are isolated either in a nonanuclear sheet-structure (brucite-type) or a dodecanuclear ring structure.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA