Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Viruses ; 16(4)2024 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-38675945

RESUMO

The field of retroviral integration research has a long history that started with the provirus hypothesis and subsequent discoveries of the retroviral reverse transcriptase and integrase enzymes. Because both enzymes are essential for retroviral replication, they became valued targets in the effort to discover effective compounds to inhibit HIV-1 replication. In 2007, the first integrase strand transfer inhibitor was licensed for clinical use, and subsequently approved second-generation integrase inhibitors are now commonly co-formulated with reverse transcriptase inhibitors to treat people living with HIV. International meetings specifically focused on integrase and retroviral integration research first convened in 1995, and this paper is part of the Viruses Special Issue on the 7th International Conference on Retroviral Integration, which was held in Boulder Colorado in the summer of 2023. Herein, we overview key historical developments in the field, especially as they pertain to the development of the strand transfer inhibitor drug class. Starting from the mid-1990s, research advancements are presented through the lens of the international conferences. Our overview highlights the impact that regularly scheduled, subject-specific international meetings can have on community-building and, as a result, on field-specific collaborations and scientific advancements.


Assuntos
Congressos como Assunto , Retroviridae , Integração Viral , Humanos , Integração Viral/efeitos dos fármacos , Retroviridae/fisiologia , Retroviridae/efeitos dos fármacos , Retroviridae/genética , Infecções por HIV/tratamento farmacológico , Infecções por HIV/virologia , HIV-1/efeitos dos fármacos , HIV-1/fisiologia , HIV-1/genética , História do Século XXI , História do Século XX
2.
J Biol Chem ; 299(6): 104730, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37084813

RESUMO

Integration of retroviral DNA into the host genome involves the formation of integrase (IN)-DNA complexes termed intasomes. Further characterization of these complexes is needed to understand their assembly process. Here, we report the single-particle cryo-EM structure of the Rous sarcoma virus (RSV) strand transfer complex (STC) intasome produced with IN and a preassembled viral/target DNA substrate at 3.36 Å resolution. The conserved intasome core region consisting of IN subunits contributing active sites interacting with viral/target DNA has a resolution of 3 Å. Our structure demonstrated the flexibility of the distal IN subunits relative to the IN subunits in the conserved intasome core, similar to results previously shown with the RSV octameric cleaved synaptic complex intasome produced with IN and viral DNA only. An extensive analysis of higher resolution STC structure helped in the identification of nucleoprotein interactions important for intasome assembly. Using structure-function studies, we determined the mechanisms of several IN-DNA interactions critical for assembly of both RSV intasomes. We determined the role of IN residues R244, Y246, and S124 in cleaved synaptic complex and STC intasome assemblies and their catalytic activities, demonstrating differential effects. Taken together, these studies advance our understanding of different RSV intasome structures and molecular determinants involved in their assembly.


Assuntos
Integrases , Vírus do Sarcoma de Rous , Integração Viral , DNA Viral/química , DNA Viral/ultraestrutura , Integrases/química , Integrases/ultraestrutura , Vírus do Sarcoma de Rous/genética , Vírus do Sarcoma de Rous/química , Microscopia Crioeletrônica
3.
Front Immunol ; 13: 830290, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35300343

RESUMO

Cytotoxic lymphocytes release proteins contained within the cytoplasmic cytolytic granules after recognition of infected or tumor target cells. These cytotoxic granular proteins (namely granzymes, granulysin, and perforin) are key immunological mediators within human cellular immunity. The availability of highly purified cytotoxic proteins has been fundamental for understanding their function in immunity and mechanistic involvement in sepsis and autoimmunity. Methods for recovery of native cytotoxic proteins can be problematic leading to: 1) the co-purification of additional proteins, confounding interpretation of function, and 2) low yields of highly purified proteins. Recombinant protein expression of individual cytolytic components can overcome these challenges. The use of mammalian expression systems is preferred for optimal post-translational modifications and avoidance of endotoxin contamination. Some of these proteins have been proposed for host directed human therapies (e.g. - granzyme A), or treatment of systemic infections or tumors as in granulysin. We report here a novel expression system using HEK293T cells for cost-effective purification of high yields of human granzymes (granzyme A and granzyme B) and granulysin with enhanced biological activity than previous reports. The resulting proteins are free of native contaminants, fold correctly, and remain enzymatically active. Importantly, these improvements have also led to the first purification of biologically active recombinant human granulysin in high yields from a mammalian system. This method can be used as a template for purification of many other secreted cellular proteins and may lead to advances for human medicine.


Assuntos
Mamíferos , Animais , Citoplasma/metabolismo , Granzimas/metabolismo , Células HEK293 , Humanos , Mamíferos/metabolismo , Perforina
5.
Commun Biol ; 4(1): 330, 2021 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-33712691

RESUMO

Despite conserved catalytic integration mechanisms, retroviral intasomes composed of integrase (IN) and viral DNA possess diverse structures with variable numbers of IN subunits. To investigate intasome assembly mechanisms, we employed the Rous sarcoma virus (RSV) IN dimer that assembles a precursor tetrameric structure in transit to the mature octameric intasome. We determined the structure of RSV octameric intasome stabilized by a HIV-1 IN strand transfer inhibitor using single particle cryo-electron microscopy. The structure revealed significant flexibility of the two non-catalytic distal IN dimers along with previously unrecognized movement of the conserved intasome core, suggesting ordered conformational transitions between intermediates that may be important to capture the target DNA. Single amino acid substitutions within the IN C-terminal domain affected intasome assembly and function in vitro and infectivity of pseudotyped RSV virions. Unexpectedly, 17 C-terminal amino acids of IN were dispensable for virus infection despite regulating the transition of the tetrameric intasome to the octameric form in vitro. We speculate that this region may regulate the binding of highly flexible distal IN dimers to the intasome core to form the octameric complex. Our studies reveal key steps in the assembly of RSV intasomes.


Assuntos
Microscopia Crioeletrônica , DNA Viral/ultraestrutura , Integrases/ultraestrutura , Vírus do Sarcoma de Rous/ultraestrutura , Imagem Individual de Molécula , Integração Viral , DNA Viral/metabolismo , Integrase de HIV/ultraestrutura , Inibidores de Integrase/farmacologia , Integrases/metabolismo , Simulação de Acoplamento Molecular , Conformação Proteica , Multimerização Proteica , Vírus do Sarcoma de Rous/efeitos dos fármacos , Vírus do Sarcoma de Rous/enzimologia , Vírus do Sarcoma de Rous/genética , Integração Viral/efeitos dos fármacos , Replicação Viral
6.
Nat Commun ; 11(1): 3121, 2020 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-32561747

RESUMO

Integration of the reverse-transcribed viral DNA into host chromosomes is a critical step in the life-cycle of retroviruses, including an oncogenic delta(δ)-retrovirus human T-cell leukemia virus type-1 (HTLV-1). Retroviral integrase forms a higher order nucleoprotein assembly (intasome) to catalyze the integration reaction, in which the roles of host factors remain poorly understood. Here, we use cryo-electron microscopy to visualize the HTLV-1 intasome at 3.7-Šresolution. The structure together with functional analyses reveal that the B56γ (B'γ) subunit of an essential host enzyme, protein phosphatase 2 A (PP2A), is repurposed as an integral component of the intasome to mediate HTLV-1 integration. Our studies reveal a key host-virus interaction underlying the replication of an important human pathogen and highlight divergent integration strategies of retroviruses.


Assuntos
Interações Hospedeiro-Patógeno/genética , Vírus Linfotrópico T Tipo 1 Humano/genética , Integrases/metabolismo , Proteína Fosfatase 2/genética , Proteínas Virais/metabolismo , Integração Viral/genética , Microscopia Crioeletrônica , DNA Viral/metabolismo , Células HEK293 , Vírus Linfotrópico T Tipo 1 Humano/enzimologia , Humanos , Integrases/ultraestrutura , Modelos Moleculares , Mutação Puntual , Ligação Proteica/genética , Proteína Fosfatase 2/metabolismo , Proteína Fosfatase 2/ultraestrutura , Proteínas Virais/ultraestrutura
7.
J Biol Chem ; 293(42): 16440-16452, 2018 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-30185621

RESUMO

Retrovirus integrase (IN) catalyzes the concerted integration of linear viral DNA ends into chromosomes. The atomic structures of five different retrovirus IN-DNA complexes, termed intasomes, have revealed varying IN subunit compositions ranging from tetramers to octamers, dodecamers, and hexadecamers. Intasomes containing two IN-associated viral DNA ends capable of concerted integration are termed stable synaptic complexes (SSC), and those formed with a viral/target DNA substrate representing the product of strand-transfer reactions are strand-transfer complexes (STC). Here, we investigated the mechanisms associated with the assembly of the Rous sarcoma virus SSC and STC. C-terminal truncations of WT IN (286 residues) indicated a role of the last 18 residues ("tail" region) in assembly of the tetrameric and octameric SSC, physically stabilized by HIV-1 IN strand-transfer inhibitors. Fine mapping through C-terminal truncations and site-directed mutagenesis suggested that at least three residues (Asp-268-Thr-270) past the last ß-strand in the C-terminal domain (CTD) are necessary for assembly of the octameric SSC. In contrast, the assembly of the octameric STC was independent of the last 18 residues of IN. Single-site substitutions in the CTD affected the assembly of the SSC, but not necessarily of the STC, suggesting that STC assembly may depend less on specific interactions of the CTD with viral DNA. Additionally, we demonstrate that trans-communication between IN dimer-DNA complexes facilitates the association of native long-terminal repeat (LTR) ends with partially defective LTR ends to produce a hybrid octameric SSC. The differential assembly of the tetrameric and octameric SSC improves our understanding of intasomes.


Assuntos
DNA Viral/metabolismo , Integrases/metabolismo , Vírus do Sarcoma de Rous/química , Integração Viral , Animais , Integrases/química , Multimerização Proteica , Sequências Repetidas Terminais
8.
Subcell Biochem ; 88: 211-243, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29900499

RESUMO

Integration of the reverse-transcribed viral cDNA into the host's genome is a critical step in the lifecycle of all retroviruses. Retrovirus integration is carried out by integrase (IN), a virus-encoded enzyme that forms an oligomeric 'intasome' complex with both ends of the linear viral DNA to catalyze their concerted insertions into the backbones of the host's DNA. IN also forms a complex with host proteins, which guides the intasome to the host's chromosome. Recent structural studies have revealed remarkable diversity as well as conserved features among the architectures of the intasome assembly from different genera of retroviruses. This chapter will review how IN oligomerizes to achieve its function, with particular focus on alpharetrovirus including the avian retrovirus Rous sarcoma virus. Another chapter (Craigie) will focus on the structure and function of IN from HIV-1.


Assuntos
DNA Complementar , DNA Viral , Integrases , Vírus do Sarcoma de Rous , Proteínas Virais , Integração Viral/fisiologia , Animais , DNA Complementar/química , DNA Complementar/genética , DNA Complementar/metabolismo , DNA Viral/química , DNA Viral/genética , DNA Viral/metabolismo , Humanos , Integrases/genética , Integrases/metabolismo , Vírus do Sarcoma de Rous/química , Vírus do Sarcoma de Rous/fisiologia , Proteínas Virais/química , Proteínas Virais/genética , Proteínas Virais/metabolismo
9.
J Biol Chem ; 292(12): 5018-5030, 2017 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-28184005

RESUMO

The retrovirus integrase (IN) inserts the viral cDNA into the host DNA genome. Atomic structures of five different retrovirus INs complexed with their respective viral DNA or branched viral/target DNA substrates have indicated these intasomes are composed of IN subunits ranging from tetramers, to octamers, or to hexadecamers. IN precursors are monomers, dimers, or tetramers in solution. But how intasome assembly is controlled remains unclear. Therefore, we sought to unravel the functional mechanisms in different intasomes. We produced kinetically stabilized Rous sarcoma virus (RSV) intasomes with human immunodeficiency virus type 1 strand transfer inhibitors that interact simultaneously with IN and viral DNA within intasomes. We examined the ability of RSV IN dimers to assemble two viral DNA molecules into intasomes containing IN tetramers in contrast to one possessing IN octamers. We observed that the last 18 residues of the C terminus ("tail" region) of IN (residues 1-286) determined whether an IN tetramer or octamer assembled with viral DNA. A series of truncations of the tail region indicated that these 18 residues are critical for the assembly of an intasome containing IN octamers but not for an intasome containing IN tetramers. The C-terminally truncated IN (residues 1-269) produced an intasome that contained tetramers but failed to produce an intasome with octamers. Both intasomes have similar catalytic activities. The results suggest a high degree of plasticity for functional multimerization and reveal a critical role of the C-terminal tail region of IN in higher order oligomerization of intasomes, potentially informing future strategies to prevent retroviral integration.


Assuntos
DNA Viral/metabolismo , Integrases/metabolismo , Vírus do Sarcoma de Rous/enzimologia , Animais , Aves , Cristalografia por Raios X , Humanos , Integrases/química , Modelos Moleculares , Multimerização Proteica , Vírus do Sarcoma de Rous/química , Vírus do Sarcoma de Rous/fisiologia , Sarcoma Aviário/metabolismo , Sarcoma Aviário/virologia , Integração Viral
10.
Nature ; 530(7590): 362-6, 2016 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-26887497

RESUMO

Integration of the reverse-transcribed viral DNA into the host genome is an essential step in the life cycle of retroviruses. Retrovirus integrase catalyses insertions of both ends of the linear viral DNA into a host chromosome. Integrase from HIV-1 and closely related retroviruses share the three-domain organization, consisting of a catalytic core domain flanked by amino- and carboxy-terminal domains essential for the concerted integration reaction. Although structures of the tetrameric integrase-DNA complexes have been reported for integrase from prototype foamy virus featuring an additional DNA-binding domain and longer interdomain linkers, the architecture of a canonical three-domain integrase bound to DNA remained elusive. Here we report a crystal structure of the three-domain integrase from Rous sarcoma virus in complex with viral and target DNAs. The structure shows an octameric assembly of integrase, in which a pair of integrase dimers engage viral DNA ends for catalysis while another pair of non-catalytic integrase dimers bridge between the two viral DNA molecules and help capture target DNA. The individual domains of the eight integrase molecules play varying roles to hold the complex together, making an extensive network of protein-DNA and protein-protein contacts that show both conserved and distinct features compared with those observed for prototype foamy virus integrase. Our work highlights the diversity of retrovirus intasome assembly and provides insights into the mechanisms of integration by HIV-1 and related retroviruses.


Assuntos
DNA Viral/química , Integrases/química , Vírus do Sarcoma de Rous/química , Vírus do Sarcoma de Rous/enzimologia , Domínio Catalítico , Cristalografia por Raios X , DNA Viral/metabolismo , HIV-1/enzimologia , HIV-1/metabolismo , Integrases/metabolismo , Modelos Moleculares , Ligação Proteica , Multimerização Proteica , Vírus do Sarcoma de Rous/genética , Vírus do Sarcoma de Rous/metabolismo , Spumavirus/enzimologia , Integração Viral
11.
World J Biol Chem ; 6(3): 83-94, 2015 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-26322168

RESUMO

The retrovirus integrase (IN) is responsible for integration of the reverse transcribed linear cDNA into the host DNA genome. First, IN cleaves a dinucleotide from the 3' OH blunt ends of the viral DNA exposing the highly conserved CA sequence in the recessed ends. IN utilizes the 3' OH ends to catalyze the concerted integration of the two ends into opposite strands of the cellular DNA producing 4 to 6 bp staggered insertions, depending on the retrovirus species. The staggered ends are repaired by host cell machinery that results in a permanent copy of the viral DNA in the cellular genome. Besides integration, IN performs other functions in the replication cycle of several studied retroviruses. The proper organization of IN within the viral internal core is essential for the correct maturation of the virus. IN plays a major role in reverse transcription by interacting directly with the reverse transcriptase and by binding to the viral capsid protein and a cellular protein. Recruitment of several other host proteins into the viral particle are also promoted by IN. IN assists with the nuclear transport of the preintegration complex across the nuclear membrane. With several retroviruses, IN specifically interacts with different host protein factors that guide the preintegration complex to preferentially integrate the viral genome into specific regions of the host chromosomal target. Human gene therapy using retrovirus vectors is directly affected by the interactions of IN with these host factors. Inhibitors directed against the human immunodeficiency virus (HIV) IN bind within the active site of IN containing viral DNA ends thus preventing integration and subsequent HIV/AIDS.

12.
J Biol Chem ; 289(28): 19648-58, 2014 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-24872410

RESUMO

We determined conditions to produce milligram quantities of the soluble Rous sarcoma virus (RSV) synaptic complex that is kinetically trapped by HIV strand transfer inhibitors (STIs). Concerted integration catalyzed by RSV integrase (IN) is effectively inhibited by HIV STIs. Optimized assembly of the RSV synaptic complex required IN, a gain-of-function 3'-OH-recessed U3 oligonucleotide, and an STI under specific conditions to maintain solubility of the trapped synaptic complex at 4 °C. A C-terminal truncated IN (1-269 residues) produced a homogeneous population of trapped synaptic complex that eluted at ∼ 151,000 Da upon Superdex 200 size-exclusion chromatography (SEC). Approximately 90% of input IN and DNA are incorporated into the trapped synaptic complex using either the C-terminally truncated IN or wild type IN (1-286 residues). No STI is present in the SEC running buffer suggesting the STI-trapped synaptic complex is kinetically stabilized. The yield of the trapped synaptic complex correlates with the dissociative half-life of the STI observed with HIV IN-DNA complexes. Dolutegravir, MK-2048, and MK-0536 are equally effective, whereas raltegravir is ∼ 70% as effective. Without an STI present in the assembly mixture, no trapped synaptic complex was observed. Fluorescence and mass spectroscopy analyses demonstrated that the STI remains associated with the trapped complex. SEC-multiangle light scattering analyses demonstrated that wild type IN and the C-terminal IN truncation are dimers that acted as precursors to the tetramer. The purified STI-trapped synaptic complex contained a tetramer as shown by cross-linking studies. Structural studies of this three-domain RSV IN in complex with viral DNA may be feasible.


Assuntos
DNA Viral/química , Integrase de HIV/química , HIV-1/química , Vírus do Sarcoma de Rous/química , DNA Viral/imunologia , Integrase de HIV/metabolismo , HIV-1/fisiologia , Humanos , Estrutura Terciária de Proteína , Vírus do Sarcoma de Rous/fisiologia , Montagem de Vírus/fisiologia
13.
PLoS One ; 8(2): e56892, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23451105

RESUMO

Integration of the retrovirus linear DNA genome into the host chromosome is an essential step in the viral replication cycle, and is catalyzed by the viral integrase (IN). Evidence suggests that IN functions as a dimer that cleaves a dinucleotide from the 3' DNA blunt ends while a dimer of dimers (tetramer) promotes concerted integration of the two processed ends into opposite strands of a target DNA. However, it remains unclear why a dimer rather than a monomer of IN is required for the insertion of each recessed DNA end. To help address this question, we have analyzed crystal structures of the Rous sarcoma virus (RSV) IN mutants complete with all three structural domains as well as its two-domain fragment in a new crystal form at an improved resolution. Combined with earlier structural studies, our results suggest that the RSV IN dimer consists of highly flexible N-terminal domains and a rigid entity formed by the catalytic and C-terminal domains stabilized by the well-conserved catalytic domain dimerization interaction. Biochemical and mutational analyses confirm earlier observations that the catalytic and the C-terminal domains of an RSV IN dimer efficiently integrates one viral DNA end into target DNA. We also show that the asymmetric dimeric interaction between the two C-terminal domains is important for viral DNA binding and subsequent catalysis, including concerted integration. We propose that the asymmetric C-terminal domain dimer serves as a viral DNA binding surface for RSV IN.


Assuntos
DNA Viral/metabolismo , Integrases/química , Integrases/metabolismo , Vírus do Sarcoma de Rous/enzimologia , Proteínas Virais/química , Proteínas Virais/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína
14.
Biochemistry ; 50(45): 9788-96, 2011 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-21992419

RESUMO

The assembly mechanism for the human immunodeficiency virus type 1 (HIV) synaptic complex (SC) capable of concerted integration is unknown. Molecular and structural studies have established that the HIV SC and prototype foamy virus (PFV) intasome contain a tetramer of integrase (IN) that catalyzes concerted integration. HIV IN purified in the presence of 1 mM EDTA and 10 mM MgSO(4) was predominately a monomer. IN efficiently promoted concerted integration of micromolar concentrations of 3'-OH recessed and blunt-ended U5 long terminal repeat (LTR) oligonucleotide (ODN) substrates (19-42 bp) into circular target DNA. Varying HIV IN to U5 DNA showed that an IN dimer:DNA end molar ratio of 1 was optimal for concerted integration. Integration activities decreased with an increasing length of the ODN, starting from the recessed 18/20 or 19/21 bp set to the 31/33 and 40/42 bp set. Under these conditions, the average fidelity for the HIV 5 bp host site duplication with recessed and blunt-ended substrates was 56%. Modifications of U5 LTR sequences beyond 21 bp from the terminus on longer DNA (1.6 kb) did not alter the ~32 bp DNaseI protective footprint, suggesting viral sequences beyond 21 bp were not essential for IN binding. The results suggest IN binds differentially to an 18/20 bp than to a 40/42 bp ODN substrate for concerted integration. The HIV IN monomer may be a suitable candidate for attempting crystallization of an IN-DNA complex in the absence or presence of strand transfer inhibitors.


Assuntos
Integrase de HIV/química , Integrase de HIV/fisiologia , Repetição Terminal Longa de HIV/fisiologia , HIV-1/fisiologia , Integração Viral/fisiologia , Sequência de Bases , Integrase de HIV/genética , Repetição Terminal Longa de HIV/genética , HIV-1/genética , Humanos , Estrutura Quaternária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidade por Substrato , Integração Viral/genética
15.
J Mol Biol ; 410(5): 831-46, 2011 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-21295584

RESUMO

Integration of human immunodeficiency virus cDNA ends by integrase (IN) into host chromosomes involves a concerted integration mechanism. IN juxtaposes two DNA blunt ends to form the synaptic complex, which is the intermediate in the concerted integration pathway. The synaptic complex is inactivated by strand transfer inhibitors (STI) with IC(50) values of ∼20 nM for inhibition of concerted integration. We detected a new nucleoprotein complex on a native agarose gel that was produced in the presence of >200 nM STI, termed the IN-single DNA (ISD) complex. Two IN dimers appear to bind in a parallel fashion at the DNA terminus, producing an ∼32-bp DNase I protective footprint. In the presence of raltegravir (RAL), MK-2048, and L-841,411, IN incorporated ∼20-25% of the input blunt-ended DNA substrate into the stabilized ISD complex. Seven other STI also produced the ISD complex (≤5% of input DNA). The formation of the ISD complex was not dependent on 3'OH processing, and the DNA was predominantly blunt ended in the complex. The RAL-resistant IN mutant N155H weakly forms the ISD complex in the presence of RAL at ∼25% level of wild-type IN. In contrast, MK-2048 and L-841,411 produced ∼3-fold to 5-fold more ISD than RAL with N155H IN, which is susceptible to these two inhibitors. The results suggest that STI are slow-binding inhibitors and that the potency to form and stabilize the ISD complex is not always related to inhibition of concerted integration. Rather, the apparent binding and dissociation properties of each STI influenced the production of the ISD complex.


Assuntos
DNA/metabolismo , Integrase de HIV/metabolismo , HIV-1/enzimologia , Inibidores de Integrase/farmacologia , Pareamento de Bases/genética , Biocatálise/efeitos dos fármacos , Carbocianinas/metabolismo , Pegada de DNA , Desoxirribonuclease I/metabolismo , Farmacorresistência Viral/efeitos dos fármacos , Eletroforese em Gel de Ágar , Corantes Fluorescentes/metabolismo , Repetição Terminal Longa de HIV/genética , HIV-1/efeitos dos fármacos , Humanos , Concentração Inibidora 50 , Inibidores de Integrase/química , Cetoácidos/química , Cetoácidos/farmacologia , Proteínas Mutantes/metabolismo , Ligação Proteica/efeitos dos fármacos , Multimerização Proteica/efeitos dos fármacos , Pirrolidinonas/química , Pirrolidinonas/farmacologia , Raltegravir Potássico , Especificidade por Substrato/efeitos dos fármacos
16.
Biochemistry ; 49(38): 8376-87, 2010 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-20799722

RESUMO

Raltegravir is an FDA approved inhibitor directed against human immunodeficiency virus type 1 (HIV-1) integrase (IN). In this study, we investigated the mechanisms associated with multiple strand transfer inhibitors capable of inhibiting concerted integration by HIV-1 IN. The results show raltegravir, elvitegravir, MK-2048, RDS 1997, and RDS 2197 all appear to encompass a common inhibitory mechanism by modifying IN-viral DNA interactions. These structurally different inhibitors bind to and inactivate the synaptic complex, an intermediate in the concerted integration pathway in vitro. The inhibitors physically trap the synaptic complex, thereby preventing target DNA binding and thus concerted integration. The efficiency of a particular inhibitor to trap the synaptic complex observed on native agarose gels correlated with its potency for inhibiting the concerted integration reaction, defined by IC(50) values for each inhibitor. At low nanomolar concentrations (<50 nM), raltegravir displayed a time-dependent inhibition of concerted integration, a property associated with slow-binding inhibitors. Studies of raltegravir-resistant IN mutants N155H and Q148H without inhibitors demonstrated that their capacity to assemble the synaptic complex and promote concerted integration was similar to their reported virus replication capacities. The concerted integration activity of Q148H showed a higher cross-resistance to raltegravir than observed with N155H, providing evidence as to why the Q148H pathway with secondary mutations is the predominant pathway upon prolonged treatment. Notably, MK-2048 is equally potent against wild-type IN and raltegravir-resistant IN mutant N155H, suggesting this inhibitor may bind similarly within their drug-binding pockets.


Assuntos
DNA Viral/metabolismo , Inibidores de Integrase/farmacologia , DNA Viral/genética , DNA Viral/farmacologia , HIV-1/genética , HIV-1/metabolismo , Humanos , Inibidores de Integrase/uso terapêutico , Integrases/genética , Integrases/farmacologia , Integrases/uso terapêutico , Mutação/efeitos dos fármacos , Pirrolidinonas/farmacologia , Quinolonas/farmacologia , Raltegravir Potássico , Replicação Viral/efeitos dos fármacos , Replicação Viral/genética
17.
J Mol Biol ; 389(1): 183-98, 2009 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-19362096

RESUMO

A macromolecular nucleoprotein complex in retrovirus-infected cells, termed the preintegration complex, is responsible for the concerted integration of linear viral DNA genome into host chromosomes. Isolation of sufficient quantities of the cytoplasmic preintegration complexes for biochemical and biophysical analysis is difficult. We investigated the architecture of HIV-1 nucleoprotein complexes involved in the concerted integration pathway in vitro. HIV-1 integrase (IN) non-covalently juxtaposes two viral DNA termini forming the synaptic complex, a transient intermediate in the integration pathway, and shares properties associated with the preintegration complex. IN slowly processes two nucleotides from the 3' OH ends and performs the concerted insertion of two viral DNA ends into target DNA. IN remains associated with the concerted integration product, termed the strand transfer complex. The synaptic complex and strand transfer complex can be isolated by native agarose gel electrophoresis. In-gel fluorescence resonance energy transfer measurements demonstrated that the energy transfer efficiencies between the juxtaposed Cy3 and Cy5 5'-end labeled viral DNA ends in the synaptic complex (0.68+/-0.09) was significantly different from that observed in the strand transfer complex (0.07+/-0.02). The calculated distances were 46+/-3 A and 83+/-5 A, respectively. DNaseI footprint analysis of the complexes revealed that IN protects U5 and U3 DNA sequences up to approximately 32 bp from the end, suggesting two IN dimers were bound per terminus. Enhanced DNaseI cleavages were observed at nucleotide positions 6 and 9 from the terminus on U3 but not on U5, suggesting independent assembly events. Protein-protein cross-linking of IN within these complexes revealed the presence of dimers, tetramers, and a larger multimer (>120 kDa). Our results suggest a new model where two IN dimers individually assemble on U3 and U5 ends before the non-covalent juxtaposition of two viral DNA ends, producing the synaptic complex.


Assuntos
Pareamento Cromossômico , DNA Viral/metabolismo , HIV-1/enzimologia , Integrases/metabolismo , Integração Viral , Anticorpos Antivirais/farmacologia , Sequência de Bases , Carbocianinas , Pareamento Cromossômico/efeitos dos fármacos , Reagentes de Ligações Cruzadas/farmacologia , Pegada de DNA , Desoxirribonuclease I/metabolismo , Transferência Ressonante de Energia de Fluorescência , Corantes Fluorescentes , HIV-1/efeitos dos fármacos , HIV-1/imunologia , Modelos Biológicos , Multimerização Proteica , Subunidades Proteicas/metabolismo , Espectrometria de Fluorescência , Especificidade por Substrato/efeitos dos fármacos , Sequências Repetidas Terminais/genética , Integração Viral/efeitos dos fármacos
18.
Methods ; 47(4): 229-36, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19049878

RESUMO

Retrovirus integrase (IN) integrates the viral linear DNA genome ( approximately 10 kb) into a host chromosome, a step which is essential for viral replication. Integration occurs via a nucleoprotein complex, termed the preintegration complex (PIC). This article focuses on the reconstitution of synaptic complexes from purified components whose molecular properties mirror those of the PIC, including the efficient concerted integration of two ends of linear viral DNA into target DNA. The methods described herein permit the biochemical and biophysical analyses of concerted integration. The methods enable (1) the study of interactions between purified recombinant IN and its viral DNA substrates at the molecular level; (2) the identification and characterization of nucleoprotein complexes involved in the human immunodeficiency virus type-1 (HIV-1) concerted integration pathway; (3) the determination of the multimeric state of IN within these complexes; (4) dissection of the interaction between HIV-1 IN and cellular proteins such as lens epithelium-derived growth factor (LEDGF/p75); (5) the examination of HIV-1 Class II and strand transfer inhibitor resistant IN mutants; (6) the mechanisms associated with strand transfer inhibitors directed against HIV-1 IN that have clinical relevance in the treatment of HIV-1/AIDS.


Assuntos
RNA Nuclear Pequeno/química , RNA Nuclear Pequeno/fisiologia , RNA Nucleolar Pequeno/química , RNA Nucleolar Pequeno/fisiologia , Integração Viral/fisiologia , DNA Viral/química , DNA Viral/fisiologia , HIV-1/química , HIV-1/fisiologia , Humanos , Domínios e Motivos de Interação entre Proteínas/fisiologia
19.
Antimicrob Agents Chemother ; 52(9): 3358-68, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18591263

RESUMO

The "strand transfer inhibitors" of human immunodeficiency virus type-1 (HIV-1) integrase (IN), so named because of their pronounced selectivity for inhibiting strand transfer over 3' OH processing, block virus replication in vivo and ex vivo and prevent concerted integration in vitro. We explored the kinetics of product formation and strand transfer inhibition within reconstituted synaptic complexes capable of concerted integration. Synaptic complexes were formed with viral DNA donors containing either two blunt ends, two 3'-OH-processed ends, or one of each. We determined that one blunt end within a synaptic complex is a sufficient condition for low-nanomolar-range strand transfer inhibition with naphthyridine carboxamide inhibitors L-870,810 and L-870,812. We further explored the catalytic properties and drug resistance profiles of a set of clinically relevant strand transfer inhibitor-resistant HIV-1 IN mutants. The diketo acids and naphthyridine carboxamides, mechanistically similar but structurally distinct strand transfer inhibitors, each select for a distinct set of drug resistance mutations ex vivo. The S153Y and N155S IN resistance mutants were selected with the diketo acid L-841,411, and the N155H mutant was selected with L-810,812. Each mutant exhibited some degree of catalytic impairment relative to the activity of wild type IN, although the N155H mutant displayed near-wild-type IN activities. The resistance profiles indicated that the S153Y mutation potentiates susceptibility to L-870,810 and L-870,812, while the N155S mutation confers resistance to L-870,810 and L-870,812. The N155H mutation confers resistance to L-870,810 and potentiates susceptibility to L-841,411. This study illuminates the interrelated mechanisms of concerted integration, strand transfer inhibition, and resistance to strand transfer inhibitors.


Assuntos
Farmacorresistência Viral , Inibidores de Integrase de HIV/farmacologia , HIV-1/efeitos dos fármacos , Cetoácidos/farmacologia , Naftiridinas/farmacologia , Integração Viral/efeitos dos fármacos , Fármacos Anti-HIV/farmacologia , DNA Viral/efeitos dos fármacos , DNA Viral/metabolismo , Farmacorresistência Viral/efeitos dos fármacos , Farmacorresistência Viral/genética , Integrase de HIV/química , Integrase de HIV/efeitos dos fármacos , Integrase de HIV/genética , HIV-1/enzimologia , HIV-1/genética , Humanos , Concentração Inibidora 50 , Testes de Sensibilidade Microbiana/métodos , Mutação , Naftiridinas/química , Integração Viral/genética
20.
Retrovirology (Auckl) ; 2: 11-16, 2008 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-19915684

RESUMO

Human immunodefi ciency virus type-1 integrase (IN) is a new and novel target for inhibitors. Strand transfer inhibitors effectively prevent concerted integration of viral DNA by IN into the host chromosomes. Raltegravir is the fi rst approved strand transfer inhibitor for the treatment of HIV-1/AIDS. We propose a mechanistic hypothesis as to "when and where" these inhibitors are active in virus-infected cells. Using native agarose gel electrophoresis, we identified a transient synaptic complex (SC) wherein IN non-covalently juxtaposes two viral DNA ends. SC possesses many properties associated with the cytoplasmic preintegration complex (PIC) in infected cells, including concerted integration. Our results show that the strand transfer inhibitors effectively "trap" or inactivate the SC preventing concerted integration. It follows that the IN-viral DNA complex is "trapped" by the inhibitors via a transient intermediate within the cytosolic PIC before entry into the nucleus.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...