Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancers (Basel) ; 14(3)2022 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-35158849

RESUMO

Geno- and phenotypic heterogeneity amongst cancer cell subpopulations are established drivers of treatment resistance and tumour recurrence. However, due to the technical difficulty associated with studying such intra-tumoural heterogeneity, this phenomenon is seldom interrogated in conventional cell culture models. Here, we employ a fluorescent lineage technique termed "optical barcoding" (OBC) to perform simultaneous longitudinal tracking of spatio-temporal fate in 64 patient-derived colorectal cancer subclones. To do so, patient-derived cancer cell lines and organoids were labelled with discrete combinations of reporter constructs, stably integrated into the genome and thus passed on from the founder cell to all its clonal descendants. This strategy enables the longitudinal monitoring of individual cell lineages based upon their unique optical barcodes. By designing a novel panel of six fluorescent proteins, the maximum theoretical subpopulation resolution of 64 discriminable subpopulations was achieved, greatly improving throughput compared with previous studies. We demonstrate that all subpopulations can be purified from complex clonal mixtures via flow cytometry, permitting the downstream isolation and analysis of any lineages of interest. Moreover, we outline an optimized imaging protocol that can be used to image optical barcodes in real-time, allowing for clonal dynamics to be resolved in live cells. In contrast with the limited intra-tumour heterogeneity observed in conventional 2D cell lines, the OBC technique was successfully used to quantify dynamic clonal expansions and contractions in 3D patient-derived organoids, which were previously demonstrated to better recapitulate the heterogeneity of their parental tumour material. In summary, we present OBC as a user-friendly, inexpensive, and high-throughput technique for monitoring intra-tumoural heterogeneity in in vitro cell culture models.

2.
EMBO Mol Med ; 13(11): e14495, 2021 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-34542930

RESUMO

Dependence receptors are known to promote survival and positive signaling such as proliferation, migration, and differentiation when activated, but to actively trigger apoptosis when unbound to their ligand. Their abnormal regulation was shown to be an important feature of tumorigenesis, allowing cancer cells to escape apoptosis triggered by these receptors while promoting in parallel major aspects of tumorigenesis such as proliferation, angiogenesis, invasiveness, and chemoresistance. This involvement in multiple cancer hallmarks has raised interest in dependence receptors as targets for cancer therapy. Although additional studies remain necessary to fully understand the complexity of signaling pathways activated by these receptors and to target them efficiently, it is now clear that dependence receptors represent very exciting targets for future cancer treatment. This manuscript reviews current knowledge on the contribution of dependence receptors to cancer and highlights the potential for therapies that activate pro-apoptotic functions of these proteins.


Assuntos
Neoplasias , Transdução de Sinais , Apoptose , Diferenciação Celular , Transformação Celular Neoplásica , Humanos , Neoplasias/tratamento farmacológico
3.
EMBO Mol Med ; 13(2): e10852, 2021 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-33314700

RESUMO

The tumor suppressor gene TP53 is the most frequently mutated gene in cancer. The compound APR-246 (PRIMA-1Met/Eprenetapopt) is converted to methylene quinuclidinone (MQ) that targets mutant p53 protein and perturbs cellular antioxidant balance. APR-246 is currently tested in a phase III clinical trial in myelodysplastic syndrome (MDS). By in vitro, ex vivo, and in vivo models, we show that combined treatment with APR-246 and inhibitors of efflux pump MRP1/ABCC1 results in synergistic tumor cell death, which is more pronounced in TP53 mutant cells. This is associated with altered cellular thiol status and increased intracellular glutathione-conjugated MQ (GS-MQ). Due to the reversibility of MQ conjugation, GS-MQ forms an intracellular drug reservoir that increases availability of MQ for targeting mutant p53. Our study shows that redox homeostasis is a critical determinant of the response to mutant p53-targeted cancer therapy.


Assuntos
Neoplasias , Preparações Farmacêuticas , Morte Celular , Linhagem Celular Tumoral , Humanos , Mutação , Neoplasias/tratamento farmacológico , Quinuclidinas , Compostos de Sulfidrila , Proteína Supressora de Tumor p53/genética
4.
EMBO Mol Med ; 8(8): 863-77, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27378792

RESUMO

In a number of human cancers, NTN1 upregulation inhibits apoptosis induced by its so-called dependence receptors DCC and UNC5H, thus promoting tumor progression. In other cancers however, the selective inhibition of this dependence receptor death pathway relies on the silencing of pro-apoptotic effector proteins. We show here that a substantial fraction of human breast tumors exhibits simultaneous DNA methylation-dependent loss of expression of NTN1 and of DAPK1, a serine threonine kinase known to transduce the netrin-1 dependence receptor pro-apoptotic pathway. The inhibition of DNA methylation by drugs such as decitabine restores the expression of both NTN1 and DAPK1 in netrin-1-low cancer cells. Furthermore, a combination of decitabine with NTN1 silencing strategies or with an anti-netrin-1 neutralizing antibody potentiates tumor cell death and efficiently blocks tumor growth in different animal models. Thus, combining DNA methylation inhibitors with netrin-1 neutralizing agents may be a valuable strategy for combating cancer.


Assuntos
Neoplasias da Mama/patologia , Metilação de DNA , Regulação para Baixo , Fatores de Crescimento Neural/biossíntese , Proteínas Supressoras de Tumor/biossíntese , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proteínas Quinases Associadas com Morte Celular/biossíntese , Humanos , Netrina-1
5.
Cancer Cell ; 29(2): 173-85, 2016 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-26859457

RESUMO

Netrin-1 has been shown to be up-regulated in a fraction of human cancers as a mechanism to allow these tumors to escape the pro-apoptotic activity of some of its main dependence receptors, the UNC5 homologs (UNC5H). Here we identify the V-2 domain of netrin-1 to be important for its interaction with the Ig1/Ig2 domains of UNC5H2. We generate a humanized anti-netrin-1 antibody that disrupts the interaction between netrin-1 and UNC5H2 and triggers death of netrin-1-expressing tumor cells in vitro. We also present evidence that combining the anti-netrin-1 antibody with epidrugs such as decitabine could be effective in treating tumors showing no or modest netrin-1 expression. These results support that this antibody is a promising drug candidate.


Assuntos
Neoplasias/terapia , Fatores de Crescimento Neural/metabolismo , Receptores de Superfície Celular/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Animais , Humanos , Camundongos , Camundongos Nus , Modelos Moleculares , Neoplasias/metabolismo , Neoplasias/patologia , Fatores de Crescimento Neural/imunologia , Receptores de Netrina , Netrina-1 , Ligação Proteica , Proteínas Supressoras de Tumor/imunologia
6.
Nucleic Acids Res ; 43(12): 5838-54, 2015 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-26007656

RESUMO

DNA methylation is thought to induce transcriptional silencing through the combination of two mechanisms: the repulsion of transcriptional activators unable to bind their target sites when methylated, and the recruitment of transcriptional repressors with specific affinity for methylated DNA. The Methyl CpG Binding Domain proteins MeCP2, MBD1 and MBD2 belong to the latter category. Here, we present MBD2 ChIPseq data obtained from the endogenous MBD2 in an isogenic cellular model of oncogenic transformation of human mammary cells. In immortalized (HMEC-hTERT) or transformed (HMLER) cells, MBD2 was found in a large proportion of methylated regions and associated with transcriptional silencing. A redistribution of MBD2 on methylated DNA occurred during oncogenic transformation, frequently independently of local DNA methylation changes. Genes downregulated during HMEC-hTERT transformation preferentially gained MBD2 on their promoter. Furthermore, depletion of MBD2 induced an upregulation of MBD2-bound genes methylated at their promoter regions, in HMLER cells. Among the 3,160 genes downregulated in transformed cells, 380 genes were methylated at their promoter regions in both cell lines, specifically associated by MBD2 in HMLER cells, and upregulated upon MBD2 depletion in HMLER. The transcriptional MBD2-dependent downregulation occurring during oncogenic transformation was also observed in two additional models of mammary cell transformation. Thus, the dynamics of MBD2 deposition across methylated DNA regions was associated with the oncogenic transformation of human mammary cells.


Assuntos
Transformação Celular Neoplásica/genética , Metilação de DNA , Proteínas de Ligação a DNA/metabolismo , Proteínas Repressoras/metabolismo , Sítios de Ligação , Mama/citologia , Linhagem Celular , Linhagem Celular Transformada , Regulação para Baixo , Células Epiteliais/metabolismo , Feminino , Proteínas de Homeodomínio/metabolismo , Humanos , Fenótipo , Telomerase/genética , Fatores de Transcrição/metabolismo , Proteína Supressora de Tumor p53/antagonistas & inibidores , Homeobox 1 de Ligação a E-box em Dedo de Zinco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...