Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38987589

RESUMO

In the period between 5,300 and 4,900 calibrated years before present (cal. BP), populations across large parts of Europe underwent a period of demographic decline1,2. However, the cause of this so-called Neolithic decline is still debated. Some argue for an agricultural crisis resulting in the decline3, others for the spread of an early form of plague4. Here we use population-scale ancient genomics to infer ancestry, social structure and pathogen infection in 108 Scandinavian Neolithic individuals from eight megalithic graves and a stone cist. We find that the Neolithic plague was widespread, detected in at least 17% of the sampled population and across large geographical distances. We demonstrate that the disease spread within the Neolithic community in three distinct infection events within a period of around 120 years. Variant graph-based pan-genomics shows that the Neolithic plague genomes retained ancestral genomic variation present in Yersinia pseudotuberculosis, including virulence factors associated with disease outcomes. In addition, we reconstruct four multigeneration pedigrees, the largest of which consists of 38 individuals spanning six generations, showing a patrilineal social organization. Lastly, we document direct genomic evidence for Neolithic female exogamy in a woman buried in a different megalithic tomb than her brothers. Taken together, our findings provide a detailed reconstruction of plague spread within a large patrilineal kinship group and identify multiple plague infections in a population dated to the beginning of the Neolithic decline.

2.
Microbiol Spectr ; 12(7): e0352423, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38860826

RESUMO

Gluten possesses unique properties that render it only partially digestible. Consequently, it exerts detrimental effects on a part of the worldwide population who are afflicted with celiac disease (1%) or related disorders (5%), particularly due to the potential for cross-contamination even when adhering to a gluten-free diet (GFD). Finding solutions to break down gluten during digestion has a high nutritional and social impact. Here, a randomized double-blind placebo-controlled in vivo challenge investigated the gluten-degrading activity of a novel probiotic preparation comprising lactobacilli and their cytoplasmic extracts, Bacillus sp., and bacterial protease. In our clinical trial, we collected feces from 70 healthy volunteers at specific time intervals. Probiotic/placebo administration lasted 32 days, followed by 10 days of wash-out. After preliminary GFD to eliminate residual gluten from feces, increasing amounts of gluten (50 mg-10 g) were administered, each one for 4 consecutive days. Compared to placebo, the feces of volunteers fed with probiotics showed much lower amounts of residual gluten, mainly with increased intakes. Probiotics also regulate the intestinal microbial communities, improving the abundance of genera pivotal to maintaining homeostasis. Quantitative PCR confirmed that all probiotics persisted during the intervention, some also during wash-out. Probiotics promoted a fecal metabolome with potential immunomodulating activity, mainly related to derivatives of branched-chain amino acids and short-chain fatty acids. IMPORTANCE: The untapped potential of gluten-degrading bacteria and their application in addressing the recognized limitations of gluten-related disorder management and the ongoing risk of cross-contamination even when people follow a gluten-free diet (GFD) emphasizes the significance of the work. Because gluten, a common protein found in many cereals, must be strictly avoided to stop autoimmune reactions and related health problems, celiac disease and gluten sensitivity present difficult hurdles. However, because of the hidden presence of gluten in many food products and the constant danger of cross-contamination during food preparation and processing, total avoidance is frequently challenging. Our study presents a novel probiotic preparation suitable for people suffering from gluten-related disorders during GFD and for healthy individuals because it enhances gluten digestion and promotes gut microbiota functionality.


Assuntos
Fezes , Microbioma Gastrointestinal , Glutens , Probióticos , Humanos , Probióticos/administração & dosagem , Glutens/metabolismo , Microbioma Gastrointestinal/efeitos dos fármacos , Fezes/microbiologia , Fezes/química , Método Duplo-Cego , Adulto , Masculino , Feminino , Lactobacillus/metabolismo , Doença Celíaca/microbiologia , Doença Celíaca/metabolismo , Doença Celíaca/dietoterapia , Dieta Livre de Glúten , Bacillus/metabolismo , Pessoa de Meia-Idade , Adulto Jovem
3.
Nat Hum Behav ; 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38831077

RESUMO

The early Iron Age (800 to 450 BCE) in France, Germany and Switzerland, known as the 'West-Hallstattkreis', stands out as featuring the earliest evidence for supra-regional organization north of the Alps. Often referred to as 'early Celtic', suggesting tentative connections to later cultural phenomena, its societal and population structure remain enigmatic. Here we present genomic and isotope data from 31 individuals from this context in southern Germany, dating between 616 and 200 BCE. We identify multiple biologically related groups spanning three elite burials as far as 100 km apart, supported by trans-regional individual mobility inferred from isotope data. These include a close biological relationship between two of the richest burial mounds of the Hallstatt culture. Bayesian modelling points to an avuncular relationship between the two individuals, which may suggest a practice of matrilineal dynastic succession in early Celtic elites. We show that their ancestry is shared on a broad geographic scale from Iberia throughout Central-Eastern Europe, undergoing a decline after the late Iron Age (450 BCE to ~50 CE).

4.
Int J Food Microbiol ; 411: 110548, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38154252

RESUMO

In this study, a comprehensive and comparative analysis was conducted on Italian Asiago-PDO cheese obtained from two different dairies named Dairy I and Dairy II using industrial and natural fermented milk, respectively. The analysis encompassed the evaluation of chemical composition, the succession of the microbiota during manufacture and ripening, and proteolysis mainly focusing on free individual amino acid (FAA) profiles. A metagenomic approach was used to investigate the cheese microbiome functionality. Differences in gross chemical composition were more evident during ripening, with Dairy II showing higher variability within batches. The microbiota varied significantly between the two dairies and ripening stages. The choice of starter culture shaped the microbiota during production and affected the microbial diversity of non-starter lactic acid bacteria (NSLAB) originated from the raw milk during ripening. Peptide chromatographic profiles and FAA concentrations increased as ripening progressed, with Dairy I showing higher production of FAA. Functional analysis of the metagenomes linked species to specific amino acid metabolism/catabolism pathways. The amino acid metabolism pathways, particularly those related to aromatic amino acids, lysine, and branched-chain amino acids, were affected by the presence of specific NSLAB species, which differed between the two dairies. The results obtained in this study reveal the impact of starter culture on peculiar cheese microbiota assemblies, which selectively targets amino acid pathways, providing insights into the potential flavor and aroma characteristics of Asiago-PDO cheese.


Assuntos
Queijo , Lactobacillales , Animais , Proteólise , Aminoácidos/metabolismo , Queijo/microbiologia , Lactobacillales/metabolismo , Leite/microbiologia
5.
Microbiome ; 9(1): 197, 2021 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-34593021

RESUMO

BACKGROUND: Dental calculus (mineralised dental plaque) preserves many types of microfossils and biomolecules, including microbial and host DNA, and ancient calculus are thus an important source of information regarding our ancestral human oral microbiome. In this study, we taxonomically characterised the dental calculus microbiome from 20 ancient human skeletal remains originating from Trentino-South Tyrol, Italy, dating from the Neolithic (6000-3500 BCE) to the Early Middle Ages (400-1000 CE). RESULTS: We found a high abundance of the archaeal genus Methanobrevibacter in the calculus. However, only a fraction of the sequences showed high similarity to Methanobrevibacter oralis, the only described Methanobrevibacter species in the human oral microbiome so far. To further investigate the diversity of this genus, we used de novo metagenome assembly to reconstruct 11 Methanobrevibacter genomes from the ancient calculus samples. Besides the presence of M. oralis in one of the samples, our phylogenetic analysis revealed two hitherto uncharacterised and unnamed oral Methanobrevibacter species that are prevalent in ancient calculus samples sampled from a broad range of geographical locations and time periods. CONCLUSIONS: We have shown the potential of using de novo metagenomic assembly on ancient samples to explore microbial diversity and evolution. Our study suggests that there has been a possible shift in the human oral microbiome member Methanobrevibacter over the last millennia. Video abstract.


Assuntos
Archaea , Metagenoma , Archaea/genética , Cálculos Dentários , Humanos , Methanobrevibacter/genética , Pessoa de Meia-Idade , Filogenia
6.
Curr Biol ; 31(19): 4219-4230.e10, 2021 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-34388371

RESUMO

Multiple lines of evidence show that modern humans interbred with archaic Denisovans. Here, we report an account of shared demographic history between Australasians and Denisovans distinctively in Island Southeast Asia. Our analyses are based on ∼2.3 million genotypes from 118 ethnic groups of the Philippines, including 25 diverse self-identified Negrito populations, along with high-coverage genomes of Australopapuans and Ayta Magbukon Negritos. We show that Ayta Magbukon possess the highest level of Denisovan ancestry in the world-∼30%-40% greater than that of Australians and Papuans-consistent with an independent admixture event into Negritos from Denisovans. Together with the recently described Homo luzonensis, we suggest that there were multiple archaic species that inhabited the Philippines prior to the arrival of modern humans and that these archaic groups may have been genetically related. Altogether, our findings unveil a complex intertwined history of modern and archaic humans in the Asia-Pacific region, where distinct Islander Denisovan populations differentially admixed with incoming Australasians across multiple locations and at various points in time.


Assuntos
Hominidae , Homem de Neandertal , Animais , Ásia , Sudeste Asiático , Austrália , Hominidae/genética , Humanos , Homem de Neandertal/genética , Filipinas , Grupos Raciais
7.
Genome Biol Evol ; 13(5)2021 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-33760047

RESUMO

Lactase persistence (LP) is a well-studied example of a Mendelian trait under selection in some human groups due to gene-culture coevolution. We investigated the frequencies of genetic variants linked to LP in Sudanese and South Sudanese populations. These populations have diverse subsistence patterns, and some are dependent on milk to various extents, not only from cows but also from other livestock such as camels and goats. We sequenced a 316-bp region involved in regulating the expression of the LCT gene on chromosome 2, which encompasses five polymorphisms that have been associated with LP. Pastoralist populations showed a higher frequency of LP-associated alleles compared with nonpastoralist groups, hinting at positive selection also among northeast African pastoralists. Among the LP variants, the -14009:G variant occurs at the highest frequency among the investigated populations, followed by the -13915:G variant, which is likely of Middle Eastern origin, consistent with Middle Eastern gene flow to the Sudanese populations. There was no incidence of the "East African" LP allele (-14010:C) in the Sudanese and South Sudanese groups, and only one heterozygous individual for the "European" LP allele (-13910:T), suggesting limited recent admixture from these geographic regions. The Beja population of the Beni Amer show three different LP variants at substantial and similar levels, resulting in one of the greatest aggregation of LP variants among all populations across the world.


Assuntos
População Negra/genética , Frequência do Gene , Lactase/genética , Alelos , Animais , Variação Genética , Genética Populacional , Haplótipos , Humanos , Leite/metabolismo , Polimorfismo de Nucleotídeo Único , Sudão do Sul
8.
Proc Natl Acad Sci U S A ; 118(13)2021 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-33753512

RESUMO

Island Southeast Asia has recently produced several surprises regarding human history, but the region's complex demography remains poorly understood. Here, we report ∼2.3 million genotypes from 1,028 individuals representing 115 indigenous Philippine populations and genome-sequence data from two ∼8,000-y-old individuals from Liangdao in the Taiwan Strait. We show that the Philippine islands were populated by at least five waves of human migration: initially by Northern and Southern Negritos (distantly related to Australian and Papuan groups), followed by Manobo, Sama, Papuan, and Cordilleran-related populations. The ancestors of Cordillerans diverged from indigenous peoples of Taiwan at least ∼8,000 y ago, prior to the arrival of paddy field rice agriculture in the Philippines ∼2,500 y ago, where some of their descendants remain to be the least admixed East Asian groups carrying an ancestry shared by all Austronesian-speaking populations. These observations contradict an exclusive "out-of-Taiwan" model of farming-language-people dispersal within the last four millennia for the Philippines and Island Southeast Asia. Sama-related ethnic groups of southwestern Philippines additionally experienced some minimal South Asian gene flow starting ∼1,000 y ago. Lastly, only a few lowlanders, accounting for <1% of all individuals, presented a low level of West Eurasian admixture, indicating a limited genetic legacy of Spanish colonization in the Philippines. Altogether, our findings reveal a multilayered history of the Philippines, which served as a crucial gateway for the movement of people that ultimately changed the genetic landscape of the Asia-Pacific region.


Assuntos
Migração Humana/história , Grupos Populacionais/história , Agricultura , Sudeste Asiático/etnologia , Austrália/etnologia , Feminino , Deriva Genética , Genômica , História Antiga , Humanos , Masculino , Oryza , Filipinas , Grupos Populacionais/genética , Taiwan/etnologia
9.
World J Gastroenterol ; 25(42): 6289-6298, 2019 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-31754290

RESUMO

The bacterium Helicobacter pylori (H. pylori) infects the stomachs of approximately 50% of all humans. With its universal occurrence, high infectivity and virulence properties it is considered as one of the most severe global burdens of modern humankind. It has accompanied humans for many thousands of years, and due to its high genetic variability and vertical transmission, its population genetics reflects the history of human migrations. However, especially complex demographic events such as the colonisation of Europe cannot be resolved with population genetic analysis of modern H. pylori strains alone. This is best exemplified with the reconstruction of the 5300-year-old H. pylori genome of the Iceman, a European Copper Age mummy. Our analysis provided precious insights into the ancestry and evolution of the pathogen and underlined the high complexity of ancient European population history. In this review we will provide an overview on the molecular analysis of H. pylori in mummified human remains that were done so far and we will outline methodological advancements in the field of ancient DNA research that support the reconstruction and authentication of ancient H. pylori genome sequences.


Assuntos
Restos Mortais/microbiologia , DNA Antigo/análise , Infecções por Helicobacter/microbiologia , Múmias , DNA Bacteriano/análise , Genoma Bacteriano , Helicobacter pylori/isolamento & purificação , Humanos , Estômago/microbiologia , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...