Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 14: 1180997, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37359554

RESUMO

Checkpoint inhibition (CPI) therapy and adoptive cell therapy with autologous tumor-infiltrating lymphocytes (TIL-based ACT) are the two most effective immunotherapies for the treatment of metastatic melanoma. While CPI has been the dominating therapy in the past decade, TIL-based ACT is beneficial for individuals even after progression on previous immunotherapies. Given that notable differences in response have been made when used as a subsequent treatment, we investigated how the qualities of TILs changed when the ex vivo microenvironment of intact tumor fragments were modulated with checkpoint inhibitors targeting programmed death receptor 1 (PD-1) and cytotoxic T-lymphocyte-associated protein 4 (CTLA-4). Initially, we show that unmodified TILs from CPI-resistant individuals can be produced, are overwhelmingly terminally differentiated, and are capable of responding to tumor. We then investigate these properties in ex vivo checkpoint modulated TILs finding that that they retain these qualities. Lastly, we confirmed the specificity of the TILs to the highest responding tumor antigens, and identified this reactivity resides largely in CD39+CD69+ terminally differentiated populations. Overall, we found that anti-PD-1 will alter the proliferative capacity while anti-CTLA4 will influence breadth of antigen specificity.


Assuntos
Linfócitos do Interstício Tumoral , Melanoma , Humanos , Imunoterapia , Microambiente Tumoral
2.
Front Immunol ; 14: 1122977, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36999039

RESUMO

Background: The B-cell lymphoma-extra-large (Bcl-XL) protein plays an important role in cancer cells' resistance to apoptosis. Pre-clinical studies have shown that vaccination with Bcl-XL-derived peptides can induce tumor-specific T cell responses that may lead to the elimination of cancer cells. Furthermore, pre-clinical studies of the novel adjuvant CAF®09b have shown that intraperitoneal (IP) injections of this adjuvant can improve the activation of the immune system. In this study, patients with hormone-sensitive prostate cancer (PC) received a vaccine consisting of Bcl-XL-peptide with CAF®09b as an adjuvant. The primary aim was to evaluate the tolerability and safety of IP and intramuscular (IM) administration, determine the optimal route of administration, and characterize vaccine immunogenicity. Patients and methods: Twenty patients were included. A total of six vaccinations were scheduled: in Group A (IM to IP injections), ten patients received three vaccines IM biweekly; after a three-week pause, patients then received three vaccines IP biweekly. In Group B (IP to IM injections), ten patients received IP vaccines first, followed by IM under a similar vaccination schedule. Safety was assessed by logging and evaluating adverse events (AE) according to Common Terminology Criteria for Adverse Events (CTCAE v. 4.0). Vaccines-induced immune responses were analyzed by Enzyme-Linked Immunospot and flow cytometry. Results: No serious AEs were reported. Although an increase in T cell response against the Bcl-XL-peptide was found in all patients, a larger proportion of patients in group B demonstrated earlier and stronger immune responses to the vaccine compared to patients in group A. Further, we demonstrated vaccine-induced immunity towards patient-specific CD4, and CD8 T cell epitopes embedded in Bcl-XL-peptide and an increase in CD4 and CD8 T cell activation markers CD107a and CD137 following vaccination. At a median follow-up of 21 months, no patients had experienced clinically significant disease progression. Conclusion: The Bcl-XL-peptide-CAF®09b vaccination was feasible and safe in patients with l hormone-sensitive PC. In addition, the vaccine was immunogenic and able to elicit CD4 and CD8 T cell responses with initial IP administration eliciting early and high levels of vaccine-specific responses in a higher number og patients. Clinical trial registration: https://clinicaltrials.gov, identifier NCT03412786.


Assuntos
Neoplasias da Próstata , Vacinas , Masculino , Humanos , Linfócitos T CD8-Positivos , Vacinação , Neoplasias da Próstata/terapia , Hormônios
3.
Expert Opin Biol Ther ; 22(5): 627-641, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35414331

RESUMO

INTRODUCTION: Adoptive cell therapy (ACT) with tumor-infiltrating lymphocytes (TILs) is a highly personalized type of cancer immunotherapy. TIL-based ACT exploits naturally occurring TILs, derived from the patients' tumor. This treatment has shown consistent clinical responses in melanoma, and recent results point toward a potential use in multiple cancer diagnoses. However, several limitations have restricted the clinical development and adaptation of TIL-based ACT. AREAS COVERED: In this review, we present the principles of TIL-based ACT and discuss the most significant limitations for therapeutic efficacy and its widespread application. The topics of therapeutic resistance (both innate and acquired), treatment-related toxicity, and the novel research topic of metabolic barriers in the tumor microenvironment (TME) are covered. EXPERT OPINION: There are many ongoing areas of research focusing on improving clinical efficacy and optimizing TIL-based ACT. Many strategies have shown a great potential, particularly strategies advancing TIL efficacy (such as increasing and harnessing ex vivo the sub-population of tumor-reactive TILs) and manufacturing processes. Novel approaches can help overcome current limitations and potentially result in TIL-based ACT entering the mainstream of cancer therapy across tumor types.


Assuntos
Linfócitos do Interstício Tumoral , Melanoma , Terapia Baseada em Transplante de Células e Tecidos , Humanos , Imunoterapia , Imunoterapia Adotiva/métodos , Melanoma/patologia , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...