Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 103
Filtrar
1.
J Clin Med ; 13(5)2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38592182

RESUMO

Background: Individuals with Down syndrome (DS) exhibit an almost complete penetrance of Alzheimer's disease (AD) pathology but are underrepresented in clinical trials for AD. The Tau protein is associated with microtubule function in the neuron and is crucial for normal axonal transport. In several different neurodegenerative disorders, Tau misfolding leads to hyper-phosphorylation of Tau (p-Tau), which may seed pathology to bystander cells and spread. This review is focused on current findings regarding p-Tau and its potential to seed pathology as a "prion-like" spreader. It also considers the consequences of p-Tau pathology leading to AD, particularly in individuals with Down syndrome. Methods: Scopus (SC) and PubMed (PM) were searched in English using keywords "tau AND seeding AND brain AND down syndrome". A total of 558 SC or 529 PM potentially relevant articles were identified, of which only six SC or three PM articles mentioned Down syndrome. This review was built upon the literature and the recent findings of our group and others. Results: Misfolded p-Tau isoforms are seeding competent and may be responsible for spreading AD pathology. Conclusions: This review demonstrates recent work focused on understanding the role of neurofibrillary tangles and monomeric/oligomeric Tau in the prion-like spreading of Tau pathology in the human brain.

2.
Alzheimers Dement ; 20(3): 2262-2272, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38270275

RESUMO

Individuals with Down syndrome (DS) have a partial or complete trisomy of chromosome 21, resulting in an increased risk for early-onset Alzheimer's disease (AD)-type dementia by early midlife. Despite ongoing clinical trials to treat late-onset AD, individuals with DS are often excluded. Furthermore, timely diagnosis or management is often not available. Of the genetic causes of AD, people with DS represent the largest cohort. Currently, there is a knowledge gap regarding the underlying neurobiological mechanisms of DS-related AD (DS-AD), partly due to limited access to well-characterized brain tissue and biomaterials for research. To address this challenge, we created an international consortium of brain banks focused on collecting and disseminating brain tissue from persons with DS throughout their lifespan, named the Down Syndrome Biobank Consortium (DSBC) consisting of 11 biobanking sites located in Europe, India, and the USA. This perspective describes the DSBC harmonized protocols and tissue dissemination goals.


Assuntos
Doença de Alzheimer , Síndrome de Down , Humanos , Síndrome de Down/genética , Bancos de Espécimes Biológicos , Doença de Alzheimer/genética , Encéfalo , Europa (Continente)
3.
J Clin Med ; 12(19)2023 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-37834764

RESUMO

Parkinson's disease (PD) is a severe neurological disease for which there is no effective treatment or cure, and therefore it remains an unmet need in medicine. We present data from four participants who received autologous transplantation of small pieces of sural nerve tissue into either the basal forebrain containing the nucleus basalis of Meynert (NBM) or the midbrain substantia nigra (SN). The grafts did not exhibit significant cell death or severe host-tissue reaction up to 55 months post-grafting and contained peripheral cells. Dopaminergic neurites showed active growth in the graft area and into the graft in the SN graft, and cholinergic neurites were abundant near the graft in the NBM. These results provide a histological basis for changes in clinical features after autologous peripheral nerve tissue grafting into the NBM or SN in PD.

4.
bioRxiv ; 2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37873355

RESUMO

As the world population ages, new molecular targets in aging and Alzheimer's Disease (AD) are needed to combat the expected influx of new AD cases. Until now, the role of RNA structure in aging and neurodegeneration has largely remained unexplored. In this study, we examined human hippocampal postmortem tissue for the formation of RNA G-quadruplexes (rG4s) in aging and AD. We found that rG4 immunostaining strongly increased in prevalence in the hippocampus with both age and with AD severity. We further found that neurofibrillary tangles (NFTs) contained rG4s, that rG4 structure can drive tau aggregation, and that rG4 formation depended on APOE genotype in the human tissue examined. Combined with previous studies showing the dependence of rG4 structure on stress and the extreme power of rG4s at oligomerizing proteins, we propose a model of neurodegeneration in which chronic rG4 formation drives proteostasis collapse. We propose that further investigation of RNA structure in neurodegeneration is a critical avenue for future treatments and diagnoses.

5.
J Clin Med ; 12(9)2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37176630

RESUMO

Numerous investigations have demonstrated significant and long-lasting neurological manifestations of COVID-19. It has been suggested that as many as four out of five patients who sustained COVID-19 will show one or several neurological symptoms that can last months after the infection has run its course. Neurological symptoms are most common in people who are less than 60 years of age, while encephalopathy is more common in those over 60. Biological mechanisms for these neurological symptoms need to be investigated and may include both direct and indirect effects of the virus on the brain and spinal cord. Individuals with Alzheimer's disease (AD) and related dementia, as well as persons with Down syndrome (DS), are especially vulnerable to COVID-19, but the biological reasons for this are not clear. Investigating the neurological consequences of COVID-19 is an urgent emerging medical need, since close to 700 million people worldwide have now had COVID-19 at least once. It is likely that there will be a new burden on healthcare and the economy dealing with the long-term neurological consequences of severe SARS-CoV-2 infections and long COVID, even in younger generations. Interestingly, neurological symptoms after an acute infection are strikingly similar to the symptoms observed after a mild traumatic brain injury (mTBI) or concussion, including dizziness, balance issues, anosmia, and headaches. The possible convergence of biological pathways involved in both will be discussed. The current review is focused on the most commonly described neurological symptoms, as well as the possible molecular mechanisms involved.

6.
Mol Syndromol ; 14(2): 89-100, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37064334

RESUMO

Research focused on Down syndrome continued to gain momentum in the last several years and is advancing our understanding of how trisomy 21 (T21) modifies molecular and cellular processes. The Trisomy 21 Research Society (T21RS) is the premier scientific organization for researchers and clinicians studying Down syndrome. During the COVID pandemic, T21RS held its first virtual conference program, sponsored by the University of California at Irvine, on June 8-10, 2021 and brought together 342 scientists, families, and industry representatives from over 25 countries to share the latest discoveries on underlying cellular and molecular mechanisms of T21, cognitive and behavioral changes, and comorbidities associated with Down syndrome, including Alzheimer's disease and Regression Disorder. Presentations of 91 cutting-edge abstracts reflecting neuroscience, neurology, model systems, psychology, biomarkers, and molecular and pharmacological therapeutic approaches demonstrate the compelling interest and continuing advancement toward innovating biomarkers and therapies aimed at ameliorating health conditions associated with T21.

7.
Alzheimers Dement (N Y) ; 8(1): e12337, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36089933

RESUMO

Introduction: The often-cited mechanism linking brain-derived neurotrophic factor (BDNF) to cognitive health has received limited experimental study. There is evidence that cognitive training, physical exercise, and mindfulness meditation may improve cognition. Here, we investigated whether improvements in cognition after these three types of structured interventions are facilitated by increases in BDNF. Methods: A total of 144 heathy older adults completed a 5-week intervention involving working memory/cognitive training, physical exercise, mindfulness meditation, or an active control condition. Serum BDNF levels and Digit Symbol Test (DST) performance were measured pre- and post-intervention. Results: Linear mixed models suggested that only the cognitive training group demonstrated augmentation of BDNF and DST performance relative to the control condition. Path analysis revealed that changes in BDNF mediate intervention-related improvement in task performance. Regression analyses showed that, across all intervention conditions, increased BDNF levels were associated with increased DST scores. Discussion: This study appears to be the first to suggest that BDNF helps mediate improvements in cognition after working memory training in healthy older adults. Highlights: Older adults were randomized to physical activity, mindfulness, cognitive training (computerized cognitive training (CCT), or control.CCT, but no other condition, led to increased serum brain-derived neurotrophic factor (BDNF) levels.CCT led to improvement on the untrained Digit Symbol Test (DST) of speed/working memory.Path analysis: increases in BDNF mediate intervention-related improvement on DST.Increases in BDNF associated with improved DST across all experimental groups.

8.
J Clin Med ; 10(21)2021 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-34768560

RESUMO

Down syndrome (DS), or trisomy 21, is the most common genetic cause of intellectual disability [...].

9.
J Clin Med ; 10(20)2021 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-34682809

RESUMO

Down syndrome (DS) is a form of accelerated aging, and people with DS are highly prone to aging-related conditions that include vascular and neurological disorders. Due to the overexpression of several genes on Chromosome 21, for example genes encoding amyloid precursor protein (APP), superoxide dismutase (SOD), and some of the interferon receptors, those with DS exhibit significant accumulation of amyloid, phospho-tau, oxidative stress, neuronal loss, and neuroinflammation in the brain as they age. In this review, we will summarize the major strides in this research field that have been made in the last few decades, as well as discuss where we are now, and which research areas are considered essential for the field in the future. We examine the scientific history of DS bridging these milestones in research to current efforts in the field. We extrapolate on comorbidities associated with this phenotype and highlight clinical networks in the USA and Europe pursuing clinical research, concluding with funding efforts and recent recommendations to the NIH regarding DS research.

10.
J Clin Med ; 10(17)2021 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-34501378

RESUMO

Individuals with Down syndrome (DS) exhibit Alzheimer's disease (AD) pathology at a young age, including amyloid plaques and neurofibrillary tangles (NFTs). Tau pathology can spread via extracellular vesicles, such as exosomes. The cargo of neuron-derived small extracellular vesicles (NDEVs) from individuals with DS contains p-Tau at an early age. The goal of the study was to investigate whether NDEVs isolated from the blood of individuals with DS can spread Tau pathology in the brain of wildtype mice. We purified NDEVs from the plasma of patients with DS-AD and controls and injected small quantities using stereotaxic surgery into the dorsal hippocampus of adult wildtype mice. Seeding competent Tau conformers were amplified in vitro from DS-AD NDEVs but not NDEVs from controls. One month or 4 months post-injection, we examined Tau pathology in mouse brains. We found abundant p-Tau immunostaining in the hippocampus of the mice injected with DS-AD NDEVs compared to injections of age-matched control NDEVs. Double labeling with neuronal and glial markers showed that p-Tau staining was largely found in neurons and, to a lesser extent, in glial cells and that p-Tau immunostaining was spreading along the corpus callosum and the medio-lateral axis of the hippocampus. These studies demonstrate that NDEVs from DS-AD patients exhibit Tau seeding capacity and give rise to tangle-like intracellular inclusions.

12.
Transl Sci Rare Dis ; 5(3-4): 99-129, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34268067

RESUMO

BACKGROUND: Recent advances in medical care have increased life expectancy and improved the quality of life for people with Down syndrome (DS). These advances are the result of both pre-clinical and clinical research but much about DS is still poorly understood. In 2020, the NIH announced their plan to update their DS research plan and requested input from the scientific and advocacy community. OBJECTIVE: The National Down Syndrome Society (NDSS) and the LuMind IDSC Foundation worked together with scientific and medical experts to develop recommendations for the NIH research plan. METHODS: NDSS and LuMind IDSC assembled over 50 experts across multiple disciplines and organized them in eleven working groups focused on specific issues for people with DS. RESULTS: This review article summarizes the research gaps and recommendations that have the potential to improve the health and quality of life for people with DS within the next decade. CONCLUSIONS: This review highlights many of the scientific gaps that exist in DS research. Based on these gaps, a multidisciplinary group of DS experts has made recommendations to advance DS research. This paper may also aid policymakers and the DS community to build a comprehensive national DS research strategy.

13.
Brain Commun ; 3(2): fcab079, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34013204

RESUMO

Synaptic degeneration has been reported as one of the best pathological correlates of cognitive deficits in Alzheimer's disease. However, the location of these synaptic alterations within hippocampal sub-regions, the vulnerability of the presynaptic versus postsynaptic compartments, and the biological mechanisms for these impairments remain unknown. Here, we performed immunofluorescence labelling of different synaptic proteins in fixed and paraffin-embedded human hippocampal sections and report reduced levels of several presynaptic proteins of the neurotransmitter release machinery (complexin-1, syntaxin-1A, synaptotagmin-1 and synaptogyrin-1) in Alzheimer's disease cases. The deficit was restricted to the outer molecular layer of the dentate gyrus, whereas other hippocampal sub-fields were preserved. Interestingly, standard markers of postsynaptic densities (SH3 and multiple ankyrin repeat domains protein 2) and dendrites (microtubule-associated protein 2) were unaltered, as well as the relative number of granule cells in the dentate gyrus, indicating that the deficit is preferentially presynaptic. Notably, staining for the axonal components, myelin basic protein, SMI-312 and Tau, was unaffected, suggesting that the local presynaptic impairment does not result from axonal loss or alterations of structural proteins of axons. There was no correlation between the reduction in presynaptic proteins in the outer molecular layer and the extent of the amyloid load or of the dystrophic neurites expressing phosphorylated forms of Tau. Altogether, this study highlights the distinctive vulnerability of the outer molecular layer of the dentate gyrus and supports the notion of presynaptic failure in Alzheimer's disease.

14.
Nat Commun ; 12(1): 740, 2021 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-33531472

RESUMO

The COVID-19 pandemic affects more than 81 million people worldwide with over 1.7 million deaths. As the population returns to work, it is critical to develop tests that reliably detect SARS-CoV-2-specific antibodies. Here we present results from a multiplex serology test for assessing the antibody responses to COVID-19. In an initial large cohort, this test shows greater than 99% agreement with COVID-19 PCR test. In a second outpatient cohort consisting of adults and children in Colorado, the IgG responses are more robust in positive/symptomatic participants than in positive/asymptomatic participants, the IgM responses in symptomatic participants are transient and largely fall below the detection limit 30 days after symptom onset, and the levels of IgA against SARS-CoV-2 receptor binding domain are significantly increased in participants with moderate-to-severe symptoms compared to those with mild-to-moderate symptoms or asymptomatic individuals. Our results thus provide insight into serology profiling and the immune response to COVID-19.


Assuntos
COVID-19/imunologia , Imunoensaio/métodos , SARS-CoV-2/imunologia , SARS-CoV-2/patogenicidade , Adulto , Anticorpos Antivirais/imunologia , Formação de Anticorpos/imunologia , COVID-19/epidemiologia , Criança , Estudos de Coortes , Colorado , Feminino , Humanos , Imunoglobulina G/imunologia , Imunoglobulina M/imunologia , Masculino , Pessoa de Meia-Idade , Pandemias/estatística & dados numéricos , Reação em Cadeia da Polimerase , SARS-CoV-2/genética , Testes Sorológicos
15.
Front Neurosci ; 14: 761, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32848549

RESUMO

Concussion or mild traumatic brain injury (mTBI) in athletes can cause persistent symptoms, known as post-concussion syndrome (PCS), and repeated injuries may increase the long-term risk for an athlete to develop neurodegenerative diseases such as chronic traumatic encephalopathy (CTE), and Alzheimer's disease (AD). The Center for Disease Control estimates that up to 3.8 million sport-related mTBI are reported each year in the United States. Despite the magnitude of the phenomenon, there is a current lack of comprehensive prognostic indicators and research has shown that available monitoring tools are moderately sensitive to short-term concussion effects but less sensitive to long-term consequences. The overall aim of this review is to discuss novel, quantitative, and objective measurements that can predict long-term outcomes following repeated sports-related mTBIs. The specific objectives were (1) to provide an overview of the current clinical and biomechanical tools available to health practitioners to ensure recovery after mTBIs, (2) to synthesize potential biological mechanisms in animal models underlying the long-term adverse consequences of mTBIs, (3) to discuss the possible link between repeated mTBI and neurodegenerative diseases, and (4) to discuss the current knowledge about fluid biomarkers for mTBIs with a focus on novel exosomal biomarkers. The conclusions from this review are that current post-concussion clinical tests are not sufficiently sensitive to injury and do not accurately quantify post-concussion alterations associated with repeated mTBIs. In the current review, it is proposed that current practices should be amended to include a repeated symptom inventory, a cognitive assessment of executive function and impulse control, an instrumented assessment of balance, vestibulo-ocular assessments, and an improved panel of blood or exosome biomarkers.

16.
Artigo em Inglês | MEDLINE | ID: mdl-32853329

RESUMO

OBJECTIVE: In this study we examined the temporal stability of the Immediate Post-Concussion Assessment and Cognitive Test (ImPACT) within NCAA Division I athletes across various timepoints using an exhaustive series of statistical models. METHODS: Within a cohort design, 48 athletes completed repeated baseline ImPACT assessments at various timepoints. Intraclass correlation coefficients (ICC) were calculated using a two-way mixed effects model with absolute agreement. RESULTS: Four ImPACT composite scores (Verbal Memory, Visual Memory, Visual Motor Speed, and Reaction Time) demonstrated moderate reliability (ICC = 0.51-0.66) across the span of a typical Division I athlete's career, which is below previous reliability recommendations (0.90) for measures used in individual decision-making. No evidence of fixed bias was detected within Verbal Memory, Visual Motor Speed, or Reaction Time composite scores, and minimal detectable change values exceeded the limits of agreement. CONCLUSIONS: The demonstrated temporal stability of the ImPACT falls below the published recommendations, and as such, fails to provide robust support for the NCAA's recommendation to obtain a single preparticipation cognitive baseline for use in sports-related concussion management throughout an athlete's career. Clinical interpretation guidelines are provided for clinicians who utilize baseline ImPACT scores for later performance comparisons.

17.
J Sports Sci ; 38(23): 2677-2687, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32715955

RESUMO

Sport-related concussion return to play (RTP) decisions are largely based on the resolution of self-reported symptoms and neurocognitive function. Some evaluators also incorporate balance; however, an objective approach to balance that can detect effects beyond the acute condition is warranted. The purpose of this study is to examine linear measures of biomechanical balance up to 6 months post-concussion, and to present preliminary diagnostic thresholds useful for RTP. Each concussed athlete participated in instrumented standing balance tasks at 4 timepoints post-concussion. The measures from concussed athletes were compared to the sport-matched non-concussed athlete group at each timepoint. Centre of pressure (COP) mediolateral (ML) velocity in double-leg stance on a hard surface discriminated well between non-concussed and concussed athletes. COP anterior-posterior (AP) velocity in tandem stance on foam showed sensitivity to concussion. Sixty per cent of athletes at 6 months post-concussion did not recover to within the proposed COP ML velocity threshold in double-leg stance on a hard surface. Seventy-one per cent of athletes at 6 months post-concussion did not recover to within the COP AP velocity threshold in tandem stance on foam. This lack of recovery potentially indicates vestibular and motor control impairments long past the typical period of RTP.


Assuntos
Traumatismos em Atletas/fisiopatologia , Concussão Encefálica/fisiopatologia , Equilíbrio Postural , Fenômenos Biomecânicos , Feminino , Seguimentos , Humanos , Masculino , Recuperação de Função Fisiológica , Volta ao Esporte , Posição Ortostática , Análise e Desempenho de Tarefas , Adulto Jovem
18.
Alzheimers Dement ; 16(7): 1065-1077, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32544310

RESUMO

Improved medical care of individuals with Down syndrome (DS) has led to an increase in life expectancy to over the age of 60 years. In conjunction, there has been an increase in age-related co-occurring conditions including Alzheimer's disease (AD). Understanding the factors that underlie symptom and age of clinical presentation of dementia in people with DS may provide insights into the mechanisms of sporadic and DS-associated AD (DS-AD). In March 2019, the Alzheimer's Association, Global Down Syndrome Foundation and the LuMind IDSC Foundation partnered to convene a workshop to explore the state of the research on the intersection of AD and DS research; to identify research gaps and unmet needs; and to consider how best to advance the field. This article provides a summary of discussions, including noting areas of emerging science and discovery, considerations for future studies, and identifying open gaps in our understanding for future focus.


Assuntos
Doença de Alzheimer/complicações , Síndrome de Down/complicações , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Síndrome de Down/metabolismo , Humanos
19.
FASEB J ; 34(2): 3359-3366, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31916313

RESUMO

Possible involvement of complement (C) systems in the pathogenesis of traumatic brain injury (TBI) was investigated by quantifying Cproteins in plasma astrocyte-derived exosomes (ADEs) of subjects with sports-related TBI (sTBI) and TBI in military veterans (mtTBI) without cognitive impairment. All sTBI subjects (n = 24) had mild injuries, whereas eight of the mtTBI subjects had moderate, and 17 had mild injuries. Plasma levels of ADEs were decreased after acute sTBI and returned to normal within months. Cprotein levels in ADEs were from 12- to 35-fold higher than the corresponding levels in neuron-derived exosomes. CD81 exosome marker-normalized ADE levels of classical pathway C4b, alternative pathway factor D and Bb, lectin pathway mannose-binding lectin (MBL), and shared neurotoxic effectors C3b and C5b-9 terminal C complex were significantly higher and those of C regulatory proteins CR1 and CD59 were lower in the first week of acute sTBI (n = 12) than in controls (n = 12). Most C abnormalities were no longer detected in chronic sTBI at 3-12 months after acute sTBI, except for elevated levels of factor D, Bb, and MBL. In contrast, significant elevations of ADE levels of C4b, factor D, Bb, MBL, C3b and C5b-9 terminal C complex, and depressions of CR1 and CD59 relative to those of controls were observed after 1-4 years in early chronic mtTBI (n = 10) and persisted for decades except for normalization of Bb, MBL, and CD59 in late chronic mtTBI (n = 15). Complement inhibitors may be useful therapeutically in acute TBI and post-concussion syndrome.


Assuntos
Astrócitos/metabolismo , Lesões Encefálicas Traumáticas/sangue , Proteínas do Sistema Complemento/metabolismo , Exossomos/metabolismo , Biomarcadores/sangue , Lesões Encefálicas Traumáticas/patologia , Proteína C-Reativa/metabolismo , Feminino , Humanos , Masculino , Adulto Jovem
20.
Brain Pathol ; 30(3): 614-640, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31912564

RESUMO

Neuroinflammation is a key element of AD pathology and conceivably a result of a disturbed resolution. Resolution of inflammation is an active process which is strictly orchestrated following the acute inflammatory response after removal of the inflammatory stimuli. Acute inflammation is actively terminated by specialized pro-resolving mediators (SPMs) thereby promoting healing and return to homeostasis. Failed resolution may contribute to persistent neuroinflammation and aggravate AD pathology. BLT1 (leukotriene B4 receptor) and ChemR23 (chemerin receptor 23) are receptors for the SPM resolvin (Rv) E1 and are important clinical targets for ending inflammation. In AD, the levels of SPMs are decreased, and pro-inflammatory mediators are increased. In the current study, the distribution of BLT1 and ChemR23 receptors in control brains and in AD as well as correlations with AD pathology was examined for the first time. BLT1 and ChemR23 were analyzed in different regions of post-mortem human brain from cases with AD, early-onset AD and mild cognitive impairment (MCI) and healthy controls, using western blotting and immunohistochemistry. BLT1 and ChemR23 were detected in neurons and glial cells in all examined regions of the human brain, with markedly higher levels in AD than in controls. The receptor levels correlated with the density of staining for the inflammation markers HLA-DR and YKL-40 for microglia and astrocytes, respectively, and elevated staining coincided with high Braak stages in AD. The relative staining densities of these receptors were higher in the basal forebrain, cingulate gyrus and hippocampal regions compared to the cerebellum and frontal cortex (BA46). In conclusion, alterations in the expression of the resolution receptor BLT1 in AD have not been reported previously and the changes in both BLT1 and ChemR23 suggest a disturbed resolution pathway in several regions of the AD brain that may play a role in disease pathology.


Assuntos
Doença de Alzheimer/metabolismo , Encéfalo/metabolismo , Receptores de Quimiocinas/metabolismo , Receptores do Leucotrieno B4/metabolismo , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/patologia , Astrócitos/metabolismo , Astrócitos/patologia , Encéfalo/patologia , Feminino , Humanos , Inflamação/metabolismo , Inflamação/patologia , Masculino , Pessoa de Meia-Idade , Neurônios/metabolismo , Neurônios/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...