Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Cell Environ ; 46(7): 2097-2111, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37151187

RESUMO

Endodormancy (ED) is a crucial stage in the life cycle of many perennial plants. ED release requires accumulating a certain amount of cold exposure, measured as chilling units. However, the mechanism governing the effect of chilling on ED duration is poorly understood. We used the potato tuber model to investigate the response to chilling as associated with ED release. We measured the accumulation of specific sugars during and after chilling, defined as sugar units. We discovered that ED duration correlated better with sugar units accumulation than chilling units. A logistic function was developed based on sugar units measurements to predict ED duration. Knockout or overexpression of the vacuolar invertase gene (StVInv) unexpectedly modified sugar units levels and extended or shortened ED, respectively. Silencing the energy sensor SNF1-related protein kinase 1, induced higher sugar units accumulation and shorter ED. Sugar units accumulation induced by chilling or transgenic lines reduced plasmodesmal (PD) closure in the dormant bud meristem. Chilling or knockout of abscisic acid (ABA) 8'-hydroxylase induced ABA accumulation, in parallel to sweetening, and antagonistically promoted PD closure. Our results suggest that chilling induce sugar units and ABA accumulation, resulting in antagonistic signals for symplastic connection of the dormant bud.


Assuntos
Solanum tuberosum , Açúcares , Açúcares/metabolismo , Ácido Abscísico/metabolismo , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , Carboidratos , Regulação da Expressão Gênica de Plantas
2.
Plant Sci ; 328: 111583, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36608874

RESUMO

Whole-plant transpiration, controlled by plant hydraulics and stomatal movement, is regulated by endogenous and environmental signals, with the light playing a dominant role. Stomatal pore size continuously adjusts to changes in light intensity and quality to ensure optimal CO2 intake for photosynthesis on the one hand, together with minimal water loss on the other. The link between light and transpiration is well established, but the genetic knowledge of how guard cells perceive those signals to affect stomatal conductance is still somewhat limited. In the current study, we evaluated the role of two central light-responsive transcription factors; a bZIP-family transcription factor ELONGATED HYPOCOTYL5 (HY5) and the basic helix-loop-helix (BHLH) transcription factor PHYTOCHROME INTERACTING FACTOR4 (PIF4), in the regulation of steady-state transpiration. We show that overexpression of PIF4 exclusively in guard cells (GCPIF4) decreases transpiration, and can restrain the high transpiration of the pif4 mutant. Expression of HY5 specifically in guard cells (GCHY5) had the opposite effect of enhancing transpiration rates of WT- Arabidopsis and tobacco plants and of the hy5 mutant in Arabidopsis. In addition, we show that GCHY5 can reverse the low transpiration caused by guard cell overexpression of the sugar sensor HEXOKINASE1 (HXK1, GCHXK), an established low transpiring genotype. Finally, we suggest that the GCHY5 reversion of low transpiration by GCHXK requires the auto-activation of the endogenous HY5 in other tissues. These findings support the existence of an ongoing diurnal regulation of transpiration by the light-responsive transcription factors HY5 and PIF4 in the stomata, which ultimately determine the whole-plant water use efficiency.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Fitocromo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Fitocromo/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Água/metabolismo , Regulação da Expressão Gênica de Plantas
3.
J Exp Bot ; 73(16): 5745-5757, 2022 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-35595294

RESUMO

Water deficit currently acts as one of the largest limiting factors for agricultural productivity worldwide. Additionally, limitation by water scarcity is projected to continue in the future with the further onset of effects of global climate change. As a result, it is critical to develop or breed for crops that have increased water use efficiency and that are more capable of coping with water scarce conditions. However, increased intrinsic water use efficiency (iWUE) typically brings a trade-off with CO2 assimilation as all gas exchange is mediated by stomata, through which CO2 enters the leaf while water vapor exits. Previously, promising results were shown using guard-cell-targeted overexpression of hexokinase to increase iWUE without incurring a penalty in photosynthetic rates or biomass production. Here, two homozygous transgenic tobacco (Nicotiana tabacum) lines expressing Arabidopsis Hexokinase 1 (AtHXK1) constitutively (35SHXK2 and 35SHXK5) and a line that had guard-cell-targeted overexpression of AtHXK1 (GCHXK2) were evaluated relative to wild type for traits related to photosynthesis and yield. In this study, iWUE was significantly higher in GCHXK2 compared with wild type without negatively impacting CO2 assimilation, although results were dependent upon leaf age and proximity of precipitation event to gas exchange measurement.


Assuntos
Arabidopsis , Nicotiana , Arabidopsis/genética , Dióxido de Carbono , Hexoquinase/genética , Fotossíntese , Melhoramento Vegetal , Folhas de Planta , Nicotiana/genética
4.
Plants (Basel) ; 11(8)2022 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-35448763

RESUMO

Sucrose synthase (SuSy) and fructokinase (FRK) work together to control carbohydrate flux in sink tissues. SuSy cleaves sucrose into fructose and UDP-glucose; whereas FRK phosphorylates fructose. Previous results have shown that suppression of the SUS1,3&4 genes by SUS-RNAi alters auxin transport in the shoot apical meristems of tomato plants and affects cotyledons and leaf structure; whereas antisense suppression of FRK2 affects vascular development. To explore the joint developmental roles of SuSy and FRK, we crossed SUS-RNAi plants with FRK2-antisense plants to create double-mutant plants. The double-mutant plants exhibited novel phenotypes that were absent from the parent lines. About a third of the plants showed arrested shoot apical meristem around the transition to flowering and developed ectopic meristems. Use of the auxin reporter DR5::VENUS revealed a significantly reduced auxin response in the shoot apical meristems of the double-mutant, indicating that auxin levels were low. Altered inflorescence phyllotaxis and significant disorientation of vascular tissues were also observed. In addition, the fruits and the seeds of the double-mutant plants were very small and the seeds had very low germination rates. These results show that SUS1,3&4 and FRK2 enzymes are jointly essential for proper meristematic and vascular development, and for fruit and seed development.

5.
Commun Biol ; 4(1): 765, 2021 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-34155329

RESUMO

The hypocotyls of germinating seedlings elongate in a search for light to enable autotrophic sugar production. Upon exposure to light, photoreceptors that are activated by blue and red light halt elongation by preventing the degradation of the hypocotyl-elongation inhibitor HY5 and by inhibiting the activity of the elongation-promoting transcription factors PIFs. The question of how sugar affects hypocotyl elongation and which cell types stimulate and stop that elongation remains unresolved. We found that overexpression of a sugar sensor, Arabidopsis hexokinase 1 (HXK1), in guard cells promotes hypocotyl elongation under white and blue light through PIF4. Furthermore, expression of PIF4 in guard cells is sufficient to promote hypocotyl elongation in the light, while expression of HY5 in guard cells is sufficient to inhibit the elongation of the hy5 mutant and the elongation stimulated by HXK1. HY5 exits the guard cells and inhibits hypocotyl elongation, but is degraded in the dark. We also show that the inhibition of hypocotyl elongation by guard cells' HY5 involves auto-activation of HY5 expression in other tissues. It appears that guard cells are capable of coordinating hypocotyl elongation and that sugar and HXK1 have the opposite effect of light on hypocotyl elongation, converging at PIF4.


Assuntos
Proteínas de Arabidopsis/fisiologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/fisiologia , Fatores de Transcrição de Zíper de Leucina Básica/fisiologia , Hexoquinase/fisiologia , Hipocótilo/crescimento & desenvolvimento , Luz
6.
Front Plant Sci ; 11: 255, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32211009

RESUMO

The temporal formation and spatial distribution of stomata on the surface of citrus floral organs and, specifically, on the ovule from which the fruit develops, were analyzed using citrus plants that express green fluorescent protein (GFP) under the guard cell-specific KST1 promoter. Stomata are found on the style, sepal, and anther of the closed flower and on ovules from the stage of anthesis. It has previously been shown that hexokinase (HXK) mediates sugar-sensing in leaf guard cells and stimulates stomatal closure. The activity and response of citrus fruit stomata to sugar-sensing by HXK was examined using plants that express HXK under the KST1 promoter. Those plants are referred to as GCHXK plants. The transpiration of young green GCHXK citrus fruits was significantly reduced, indicating that their stomata respond to sugar similar to leaf stomata. Toward fruit maturation, fruit stomata are plugged and stop functioning, which explains why WT and GCHXK mature yellow fruits exhibited similar water loss. Seeds of the GCHXK plants were smaller and germinated more slowly than the WT seeds. We suggest that the stomata of young green citrus fruits, but not mature yellow fruits, respond to sugar levels via HXK and that fruit stomata are important for proper seed development.

7.
Front Plant Sci ; 11: 614534, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33510758

RESUMO

Crop yield is largely affected by global climate change. Especially periods of heat and drought limit crop productivity worldwide. According to current models of future climate scenarios, heatwaves and periods of drought are likely to increase. Potato, as an important food crop of temperate latitudes, is very sensitive to heat and drought which impact tuber yield and quality. To improve abiotic stress resilience of potato plants, we aimed at co-expressing hexokinase 1 from Arabidopsis thaliana (AtHXK1) in guard cells and SELF-PRUNING 6A (SP6A) using the leaf/stem-specific StLS1 promoter in order to increase water use efficiency as well as tuberization under drought and heat stress. Guard cell-specific expression of AtHXK1 decreased stomatal conductance and improved water use efficiency of transgenic potato plants as has been shown for other crop plants. Additionally, co-expression with the FT-homolog SP6A stimulated tuberization and improved assimilate allocation to developing tubers under control as well as under single and combined drought and heat stress conditions. Thus, co-expression of both proteins provides a novel strategy to improve abiotic stress tolerance of potato plants.

8.
Front Plant Sci ; 10: 1499, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31803219

RESUMO

Water is a limiting resource for many land plants. Most of the water taken up by plants is lost to the atmosphere through the stomata, which are adjustable pores on the leaf surface that allow for gas exchange between the plant and the atmosphere. Modulating stomatal activity might be an effective way to reduce plants' water consumption and enhance their productivity under normal, as well as water-limiting conditions. Our recent discovery of stomatal regulation by sugars that is mediated by guard-cell hexokinase (HXK), a sugar-sensing enzyme, has raised the possibility that HXK might be used to increase plant water-use efficiency (WUE; i.e., carbon gain per unit of water). We show here that transgenic tomato and Arabidopsis plants with increased expression of HXK in their guard cells (GCHXK plants) exhibit reduced transpiration and higher WUE without any negative effects on growth under normal conditions, as well as drought avoidance and improved photosynthesis and growth under limited-water conditions. Our results demonstrate that exclusive expression of HXK in guard cells is an effective tool for improving WUE, and plant performance under drought.

9.
Trends Plant Sci ; 24(6): 507-518, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30862392

RESUMO

Stomata are dynamic pores in the impermeable cuticle that coats the aerial parts of vascular plants, allowing the entry of CO2 for photosynthesis and controlling water loss. They are composed of two guard cells that can swell or shrink due to an increase or decrease in their osmotic pressure, respectively. Swelling opens the stomata and shrinking closes the stomata. For more than a century, scientists have been working to uncover the nature of the osmolytes that modulate osmotic pressure in guard cells. Recent discoveries have undermined long-standing theories in this area, reversing the understood roles of sugars and demonstrating the evolution of scientific theories. Here, we describe the evolution of guard-cell osmoregulation theories with an emphasis on the role of sugars.


Assuntos
Estômatos de Plantas , Açúcares , Fotossíntese , Água
10.
Front Plant Sci ; 10: 95, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30800137

RESUMO

Sucrose is the end product of photosynthesis and the primary sugar transported in the phloem of most plants. Sucrose synthase (SuSy) is a glycosyl transferase enzyme that plays a key role in sugar metabolism, primarily in sink tissues. SuSy catalyzes the reversible cleavage of sucrose into fructose and either uridine diphosphate glucose (UDP-G) or adenosine diphosphate glucose (ADP-G). The products of sucrose cleavage by SuSy are available for many metabolic pathways, such as energy production, primary-metabolite production, and the synthesis of complex carbohydrates. SuSy proteins are usually homotetramers with an average monomeric molecular weight of about 90 kD (about 800 amino acids long). Plant SuSy isozymes are mainly located in the cytosol or adjacent to plasma membrane, but some SuSy proteins are found in the cell wall, vacuoles, and mitochondria. Plant SUS gene families are usually small, containing between four to seven genes, with distinct exon-intron structures. Plant SUS genes are divided into three separate clades, which are present in both monocots and dicots. A comprehensive phylogenetic analysis indicates that a first SUS duplication event may have occurred before the divergence of the gymnosperms and angiosperms and a second duplication event probably occurred in a common angiosperm ancestor, leading to the existence of all three clades in both monocots and dicots. Plants with reduced SuSy activity have been shown to have reduced growth, reduced starch, cellulose or callose synthesis, reduced tolerance to anaerobic-stress conditions and altered shoot apical meristem function and leaf morphology. Plants overexpressing SUS have shown increased growth, increased xylem area and xylem cell-wall width, and increased cellulose and starch contents, making SUS high-potential candidate genes for the improvement of agricultural traits in crop plants. This review summarizes the current knowledge regarding plant SuSy, including newly discovered possible developmental roles for SuSy in meristem functioning that involve sugar and hormonal signaling.

11.
Plants (Basel) ; 8(12)2019 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-31888275

RESUMO

Abiotic stresses such as drought and saline water impose major limitations on plant growth. Modulation of stomatal behavior may help plants cope with such stresses by reducing both water loss and salt uptake. Hexokinase (HXK) is a sugar-phosphorylating enzyme involved in guard cells' sugar-sensing, mediating stomatal closure and coordinating photosynthesis with transpiration. We generated transgenic tobacco lines expressing the Arabidopsis hexokinase1 (AtHXK1) under the guard cell-specific promoter KST1 and examined those plants using growth room and greenhouse experiments. The expression of AtHXK1 in tobacco guard cells reduced stomatal conductance and transpiration by about 25% with no negative effects on photosynthesis or growth, leading to increased water-use efficiency. In addition, these plants exhibited tolerance to drought and salt stress due to their lower transpiration rate, indicating that improved stomatal function has the potential to improve plant performance under stress conditions.

12.
PLoS One ; 13(10): e0205359, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30312346

RESUMO

As plants evolved to function on land, they developed stomata for effective gas exchange, for photosynthesis and for controlling water loss. We have recently shown that sugars, as the end product of photosynthesis, close the stomata of various angiosperm species, to coordinate sugar production with water loss. In the current study, we examined the sugar responses of the stomata of phylogenetically different plant species and species that employ different photosynthetic mechanisms (i.e., C3, C4 and CAM). To examine the effect of sucrose on stomata, we treated leaves with sucrose and then measured their stomatal apertures. Sucrose reduced stomatal aperture, as compared to an osmotic control, suggesting that regulation of stomata by sugars is a trait that evolved early in evolutionary history and has been conserved across different groups of plants.


Assuntos
Magnoliopsida/fisiologia , Fotossíntese/genética , Estômatos de Plantas/metabolismo , Água/metabolismo , Estômatos de Plantas/genética , Estômatos de Plantas/crescimento & desenvolvimento , Sacarose
13.
Front Plant Sci ; 9: 339, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29616058

RESUMO

Sucrose, a glucose-fructose disaccharide, is the main sugar transported in the phloem of most plants and is the origin of most of the organic matter. Upon arrival in sink tissues, the sucrose must be cleaved by invertase or sucrose synthase. Both sucrose-cleaving enzymes yield free fructose, which must be phosphorylated by either fructokinase (FRK) or hexokinase (HXK). The affinity of FRK to fructose is much higher than that of HXK, making FRKs central for fructose metabolism. An FRK gene family seems to exist in most, if not all plants and usually consists of several cytosolic FRKs and a single plastidic FRK. These genes are expressed mainly in sink tissues such as roots, stems, flowers, fruits, and seeds, with lower levels of expression often seen in leaves. Plant FRK enzymes vary in their biochemical properties such as affinity for fructose, inhibition by their substrate (i.e., fructose), and expression level in different tissues. This review describes recently revealed roles of plant FRKs in plant development, including the combined roles of the plastidic and cytosolic FRKs in vascular tissues and seed development.

14.
PLoS One ; 12(8): e0182334, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28787452

RESUMO

Metabolic enzymes have been found to play roles in plant development. Sucrose synthase (SUS) is one of the two enzyme families involved in sucrose cleavage in plants. In tomato, six SUS genes have been found. We generated transgenic tomato plants with RNAi suppression of SlSUS1, SlSUS3 and SlSUS4 genes. Independent transgenic lines with RNAi suppression of more than one SUS gene exhibited morphological effects on their cotyledons and leaf structure, but there were no significant effects on their carbohydrate levels, demonstrating that SUS has a developmental function, in addition to its metabolic function. Shoot apices of the transgenic lines showed elevated expression of JAGGED (JAG) and the auxin transporter PIN1. In a PIN1-GFP fusion reporter/SUS-RNAi hybrid, PIN1-GFP patterns were altered in developing leaves (as compared to control plants), indicating that SlSUS suppression alters auxin signaling. These results suggest possible roles for SUS in the regulation of plant growth and leaf morphology, in association with the auxin-signaling pathway.


Assuntos
Glucosiltransferases/genética , Ácidos Indolacéticos/metabolismo , Folhas de Planta/anatomia & histologia , Interferência de RNA , Transdução de Sinais/genética , Solanum lycopersicum/citologia , Solanum lycopersicum/enzimologia , Regulação da Expressão Gênica de Plantas/genética , Glucosiltransferases/deficiência , Isoenzimas/deficiência , Isoenzimas/genética , Solanum lycopersicum/genética , Solanum lycopersicum/crescimento & desenvolvimento , Folhas de Planta/crescimento & desenvolvimento , Regiões Promotoras Genéticas/genética , beta-Glucosidase/genética
15.
J Exp Bot ; 68(11): 2885-2897, 2017 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-28531314

RESUMO

To date, guard cell promoters have been examined in only a few species, primarily annual dicots. A partial segment of the potato (Solanum tuberosum) KST1 promoter (KST1 partial promoter, KST1ppro) has previously been shown to confer guard cell expression in potato, tomato (Solanum lycopersicum), citrus [Troyer citrange (C. sinensis×Poncirus trifoliata)], and Arabidopsis (Arabidopsis thaliana). Here, we describe an extensive analysis of the expression pattern of KST1ppro in eight (previously reported, as well as new) species from five different angiosperm families, including the Solanaceae and the Cucurbitaceae, Arabidopsis, the monocot barley (Hordeum vulgare), and two perennial species: grapevine (Vitis vinifera) and citrus. Using confocal imaging and three-dimensional movies, we demonstrate that KST1ppro drives guard cell expression in all of these species, making it the first dicot-originated guard cell promoter shown to be active in a monocot and the first promoter reported to confer guard cell expression in barley and cucumber (Cucumis sativus). The results presented here indicate that KST1ppro can be used to drive constitutive guard cell expression in monocots and dicots and in both annual and perennial plants. In addition, we show that the KST1ppro is active in guard cells shortly after the symmetric division of the guard mother cell and generates stable expression in mature guard cells. This allows us to follow the spatial and temporal distribution of stomata in cotyledons and true leaves.


Assuntos
Células Vegetais/metabolismo , Proteínas de Plantas/genética , Plantas/genética , Canais de Potássio/genética , Regiões Promotoras Genéticas , Solanum tuberosum/genética , Clonagem Molecular/métodos , Expressão Gênica , Folhas de Planta/citologia , Folhas de Planta/metabolismo
16.
Plant J ; 91(2): 325-339, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28390076

RESUMO

Sugars affect central aspects of plant physiology, including photosynthesis, stomatal behavior and the loss of water through the stomata. Yet, the potential effects of sugars on plant aquaporins (AQPs) and water conductance have not been examined. We used database and transcriptional analyses, as well as cellular and whole-plant functional techniques to examine the link between sugar-related genes and AQPs. Database analyses revealed a high level of correlation between the expression of AQPs and that of sugar-related genes, including the Arabidopsis hexokinases 1 (AtHXK1). Increased expression of AtHXK1, as well as the addition of its primary substrate, glucose (Glc), repressed the expression of 10 AQPs from the plasma membrane-intrinsic proteins (PIP) subfamily (PIP-AQPs) and induced the expression of two stress-related PIP-AQPs. The osmotic water permeability of mesophyll protoplasts of AtHXK1-expressing plants and the leaf hydraulic conductance of those plants were significantly reduced, in line with the decreased expression of PIP-AQPs. Conversely, hxk1 mutants demonstrated a higher level of hydraulic conductance, with increased water potential in their leaves. In addition, the presence of Glc reduced leaf water potential, as compared with an osmotic control, indicating that Glc reduces the movement of water from the xylem into the mesophyll. The production of sugars entails a significant loss of water and these results suggest that sugars and AtHXK1 affect the expression of AQP genes and reduce leaf water conductance, to coordinate sugar levels with the loss of water through transpiration.


Assuntos
Aquaporinas/genética , Proteínas de Arabidopsis/genética , Arabidopsis/fisiologia , Hexoquinase/genética , Folhas de Planta/fisiologia , Açúcares/metabolismo , Aquaporinas/metabolismo , Arabidopsis/efeitos dos fármacos , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Glucose/metabolismo , Glucose/farmacologia , Hexoquinase/metabolismo , Células do Mesofilo/metabolismo , Transpiração Vegetal , Plantas Geneticamente Modificadas
19.
Front Plant Sci ; 7: 2047, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28119723

RESUMO

Sucrose (a disaccharide made of glucose and fructose) is the primary carbon source transported to sink organs in many plants. Since fructose accounts for half of the hexoses used for metabolism in sink tissues, plant fructokinases (FRKs), the main fructose-phosphorylating enzymes, are likely to play a central role in plant development. However, to date, their specific functions have been the subject of only limited study. The Arabidopsis genome contains seven genes encoding six cytosolic FRKs and a single plastidic FRK. T-DNA knockout mutants for five of the seven FRKs were identified and used in this study. Single knockouts of the FRK mutants did not exhibit any unusual phenotype. Double-mutants of AtFRK6 (plastidic) and AtFRK7 showed normal growth in soil, but yielded dark, distorted seeds. The seed distortion could be complemented by expression of the well-characterized tomato SlFRK1, confirming that a lack of FRK activity was the primary cause of the seed phenotype. Seeds of the double-mutant germinated, but failed to establish on 1/2 MS plates. Seed establishment was made possible by the addition of glucose or sucrose, indicating reduced seed storage reserves. Metabolic profiling of the double-mutant seeds revealed decreased TCA cycle metabolites and reduced fatty acid metabolism. Examination of the mutant embryo cells revealed smaller oil bodies, the primary storage reserve in Arabidopsis seeds. Quadruple and penta FRK mutants showed growth inhibition and leaf wilting. Anatomical analysis revealed smaller trachea elements and smaller xylem area, accompanied by necrosis around the cambium and the phloem. These results demonstrate overlapping and complementary roles of the plastidic AtFRK6 and the cytosolic AtFRK7 in seed storage accumulation, and the importance of AtFRKs for vascular development.

20.
New Phytol ; 209(4): 1484-95, 2016 03.
Artigo em Inglês | MEDLINE | ID: mdl-26467542

RESUMO

Plants have two kinds of fructokinases (FRKs) that catalyze the key step of fructose phosphorylation, cytosolic and plastidic. The major cytosolic tomato FRK, SlFRK2, is essential for the development of xylem vessels. In order to study the role of SlFRK3, which encodes the only plastidic FRK, we generated transgenic tomato (Solanum lycopersicon) plants with RNAi suppression of SlFRK3 as well as plants expressing beta-glucoronidase (GUS) under the SlFRK3 promoter. GUS staining indicated SlFRK3 expression in vascular tissues of the leaves and stems, including cambium, differentiating xylem, young xylem fibers and phloem companion cells. Suppression of SlFRK3 reduced the stem xylem area, stem and root water conductance, and whole-plant transpiration, with minor effects on plant development. However, suppression of SlFRK3 accompanied by partial suppression of SlFRK2 induced significant growth-inhibition effects, including the wilting of mature leaves. Grafting experiments revealed that these growth effects are imposed primarily by the leaves, whose petioles had unlignified, thin-walled xylem fibers with collapsed parenchyma cells around the vessels. A cross between the SlFRK2-antisense and SlFRK3-RNAi lines exhibited similar wilting and anatomical effects, confirming that these effects are the result of the combined suppression of SlFRK3 and SlFRK2. These results demonstrate a role of the plastidic SlFRK3 in xylem development and hydraulic conductance.


Assuntos
Frutoquinases/metabolismo , Proteínas de Plantas/metabolismo , Plastídeos/enzimologia , Solanum lycopersicum/enzimologia , Xilema/enzimologia , Transporte Biológico , Biomassa , Flores/fisiologia , Regulação da Expressão Gênica de Plantas , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/fisiologia , Fenótipo , Folhas de Planta/metabolismo , Caules de Planta/metabolismo , Transpiração Vegetal/fisiologia , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas/genética , Solubilidade , Água , Xilema/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...