Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 227
Filtrar
1.
Circulation ; 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38682338

RESUMO

BACKGROUND: Most organs are maintained lifelong by resident stem/progenitor cells. During development and regeneration, lineage-specific stem/progenitor cells can contribute to the growth or maintenance of different organs, whereas fully differentiated mature cells have less regenerative potential. However, it is unclear whether vascular endothelial cells (ECs) are also replenished by stem/progenitor cells with EC-repopulating potential residing in blood vessels. It has been reported recently that some EC populations possess higher clonal proliferative potential and vessel-forming capacity compared with mature ECs. Nevertheless, a marker to identify vascular clonal repopulating ECs (CRECs) in murine and human individuals is lacking, and, hence, the mechanism for the proliferative, self-renewal, and vessel-forming potential of CRECs is elusive. METHODS: We analyzed colony-forming, self-renewal, and vessel-forming potential of ABCG2 (ATP binding cassette subfamily G member 2)-expressing ECs in human umbilical vessels. To study the contribution of Abcg2-expressing ECs to vessel development and regeneration, we developed Abcg2CreErt2;ROSA TdTomato mice and performed lineage tracing during mouse development and during tissue regeneration after myocardial infarction injury. RNA sequencing and chromatin methylation chromatin immunoprecipitation followed by sequencing were conducted to study the gene regulation in Abcg2-expressing ECs. RESULTS: In human and mouse vessels, ECs with higher ABCG2 expression (ABCECs) possess higher clonal proliferative potential and in vivo vessel-forming potential compared with mature ECs. These cells could clonally contribute to vessel formation in primary and secondary recipients after transplantation. These features of ABCECs meet the criteria of CRECs. Results from lineage tracing experiments confirm that Abcg2-expressing CRECs (AbcCRECs) contribute to arteries, veins, and capillaries in cardiac tissue development and vascular tissue regeneration after myocardial infarction. Transcriptome and epigenetic analyses reveal that a gene expression signature involved in angiogenesis and vessel development is enriched in AbcCRECs. In addition, various angiogenic genes, such as Notch2 and Hey2, are bivalently modified by trimethylation at the 4th and 27th lysine residue of histone H3 (H3K4me3 and H3K27me3) in AbcCRECs. CONCLUSIONS: These results are the first to establish that a single prospective marker identifies CRECs in mice and human individuals, which holds promise to provide new cell therapies for repair of damaged vessels in patients with endothelial dysfunction.

2.
J Acad Ophthalmol (2017) ; 15(2): e243-e247, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38021032

RESUMO

Background Beginning January 26, 2022, the U.S. Medical Licensing Exam (USMLE) Step 1 changed from a numerical score to pass/fail (P/F). The purpose of this study was to determine the perspective of ophthalmology program directors regarding this change in evaluating applicants. Methods After institutional review board approval, a survey was sent out to program directors of all 125 ophthalmology programs accredited by the Accreditation Council for Graduate Medical Education. Survey questions asked for program demographics, the utility of USMLE Step 1 and 2 Clinical Knowledge scores in assessing applicants, and the importance of 16 different applicant metrics before and after Step 1 becomes P/F. The metrics examined were: letters of recommendation; clerkship grades; class ranking; Alpha Omega Alpha Membership; Gold Humanism Honor Society Membership; Dean's Letter; involvement and leadership; personal statement; number of abstracts, presentations, and publications; mean number of research experiences in the specialty; Step 2 Clinical Knowledge score; volunteering; preclinical grades; away rotation in the specialty; the applicant having another graduate degree; and graduation from a top 40 National Institutes of Health-funded program. Data were analyzed using nonoverlapping 95% confidence intervals. Results The survey was completed by 50 (40%) program directors. Sixty-eight percent of respondents stated a student's ranking would be considered more after USMLE Step 1 scores become P/F, and 60% stated medical schools should share clerkship shelf exam scores with residency programs. There were no significant differences in program directors' rankings of applicant metrics following the transition to P/F Step 1. Conclusion Based on our data, program directors will likely not place a greater emphasis on Step 2 scores, despite it being the only remaining objective measure for all applicants following the switch to a P/F Step 1. Nevertheless, program directors expressed an interest in receiving other objective measures, such as shelf exam scores and class ranking, as part of the application process. Notably, we found no significant changes in the rankings of various applicant metrics before and after the transition to P/F Step 1, indicating that the metrics that were important to program directors prior to the change remain just as critical in the new era of admissions.

3.
Cell Rep Med ; 4(11): 101254, 2023 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-37890487

RESUMO

The post-acute sequelae of COVID-19 (PASC), also known as long COVID, is often associated with debilitating symptoms and adverse multisystem consequences. We obtain plasma samples from 117 individuals during and 6 months following their acute phase of infection to comprehensively profile and assess changes in cytokines, proteome, and metabolome. Network analysis reveals sustained inflammatory response, platelet degranulation, and cellular activation during convalescence accompanied by dysregulation in arginine biosynthesis, methionine metabolism, taurine metabolism, and tricarboxylic acid (TCA) cycle processes. Furthermore, we develop a prognostic model composed of 20 molecules involved in regulating T cell exhaustion and energy metabolism that can reliably predict adverse clinical outcomes following discharge from acute infection with 83% accuracy and an area under the curve (AUC) of 0.96. Our study reveals pertinent biological processes during convalescence that differ from acute infection, and it supports the development of specific therapies and biomarkers for patients suffering from long COVID.


Assuntos
COVID-19 , Síndrome de COVID-19 Pós-Aguda , Humanos , Convalescença , Multiômica , Biomarcadores , Fenótipo
4.
Cells ; 12(19)2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37830574

RESUMO

Previously, the RXR agonist UAB126 demonstrated therapeutic potential to treat obese mice by controlling blood glucose levels (BGL) and altering the expression of genes associated with lipid metabolism and inflammatory response. The purpose of the study was to assess the effects of UAB126 on the progression of diabetic retinopathy (DR) in rodent models of type 1 diabetes (T1D), streptozotocin-induced, and type 2 diabetes (T2D), in db/db mice. UAB126 treatment was delivered either by oral gavage for 6 weeks or by topical application of eye drops for 2 weeks. At the end of the treatment, the retinal function of diabetic mice was assessed by electroretinography (ERG), and their retinal tissue was harvested for protein and gene expression analyses. Bone-marrow cells were isolated and differentiated into bone marrow-derived macrophages (BMDMs). The glycolysis stress test and the 2-DG glucose uptake analysis were performed. Our results demonstrated that in the UAB126-treated diabetic BMDMs, the ECAR rate and the 2-DG uptake were improved as compared to untreated diabetic BMDMs. In UAB126-treated diabetic mice, hyperglycemia was reduced and associated with the preservation of ERG amplitudes and enhanced AMPK activity. Retinas from diabetic mice treated with topical UAB126 demonstrated an increase in Rxr and Ppar and the expression of genes associated with lipid metabolism. Altogether, our data indicate that RXR activation is beneficial to preclinical models of DR.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Retinopatia Diabética , Camundongos , Animais , Retinopatia Diabética/tratamento farmacológico , Retinopatia Diabética/prevenção & controle , Retinopatia Diabética/metabolismo , Receptores X de Retinoides , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Experimental/metabolismo , Modelos Animais de Doenças
5.
bioRxiv ; 2023 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-37577690

RESUMO

Previously, the RXR agonist UAB126 demonstrated therapeutic potential to treat obese mice by controlling blood glucose levels (BGL) and altering the expression of genes associated with lipid metabolism and inflammatory response. The purpose of the study was to assess UAB126 effect in progression of diabetic retinopathy (DR) in rodent models of Type1 diabetes (T1D), streptozotocin-induced, and Type2 diabetes (T2D), the db/db mice. UAB126 treatment was delivered either by oral gavage for 6 weeks or by topical application of eye drops for 2 weeks. At the end of the treatment, the retinal function of diabetic mice was assessed by electroretinography (ERG), and their retinal tissue was harvested for protein and gene expression analyses. Bone-marrow cells were isolated and differentiated into bone marrow-derived macrophages (BMDMs). The glycolysis stress test and the 2-DG glucose uptake analysis were performed. Our results demonstrated that in the UAB126-treated diabetic BMDMs, the ECAR rate and the 2-DG uptake were improved as compared to untreated diabetic BMDMs. In UAB126-treated diabetic mice, hyperglycemia was reduced and associated with the preservation of ERG amplitudes and enhanced AMPK activity. Retinas from diabetic mice treated with topical UAB126 demonstrated an increase in Rxr and Ppar, and expression of genes associated with lipid metabolism. Altogether, our data indicate that RXR activation is beneficial to preclinical models of DR.

6.
Diabetologia ; 66(9): 1705-1718, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37311879

RESUMO

AIMS/HYPOTHESIS: Hyper-reflective crystalline deposits found in retinal lesions have been suggested to predict the progression of diabetic retinopathy, but the nature of these structures remains unknown. METHODS: Scanning electron microscopy and immunohistochemistry were used to identify cholesterol crystals (CCs) in human donor, pig and mouse tissue. The effects of CCs were analysed in bovine retinal endothelial cells in vitro and in db/db mice in vivo using quantitative RT-PCR, bulk RNA sequencing, and cell death and permeability assays. Cholesterol homeostasis was determined using 2H2O and 2H7-cholesterol. RESULTS: We identified hyper-reflective crystalline deposits in human diabetic retina as CCs. Similarly, CCs were found in the retina of a diabetic mouse model and a high-cholesterol diet-fed pig model. Cell culture studies demonstrated that treatment of retinal cells with CCs can recapitulate all major pathogenic mechanisms leading to diabetic retinopathy, including inflammation, cell death and breakdown of the blood-retinal barrier. Fibrates, statins and α-cyclodextrin effectively dissolved CCs present in in vitro models of diabetic retinopathy, and prevented CC-induced endothelial pathology. Treatment of a diabetic mouse model with α-cyclodextrin reduced cholesterol levels and CC formation in the retina, and prevented diabetic retinopathy. CONCLUSIONS/INTERPRETATION: We established that cholesterol accumulation and CC formation are a unifying pathogenic mechanism in the development of diabetic retinopathy.


Assuntos
Diabetes Mellitus Experimental , Retinopatia Diabética , alfa-Ciclodextrinas , Animais , Bovinos , Camundongos , Humanos , Suínos , Retinopatia Diabética/metabolismo , alfa-Ciclodextrinas/efeitos adversos , alfa-Ciclodextrinas/metabolismo , Células Endoteliais/metabolismo , Diabetes Mellitus Experimental/metabolismo , Retina/metabolismo , Modelos Animais de Doenças , Colesterol/metabolismo
7.
Blood ; 142(6): 574-588, 2023 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-37192295

RESUMO

Tyrosine kinase inhibitors (TKIs) are very effective in treating chronic myelogenous leukemia (CML), but primitive, quiescent leukemia stem cells persist as a barrier to the cure. We performed a comprehensive evaluation of metabolic adaptation to TKI treatment and its role in CML hematopoietic stem and progenitor cell persistence. Using a CML mouse model, we found that glycolysis, glutaminolysis, the tricarboxylic acid cycle, and oxidative phosphorylation (OXPHOS) were initially inhibited by TKI treatment in CML-committed progenitors but were restored with continued treatment, reflecting both selection and metabolic reprogramming of specific subpopulations. TKI treatment selectively enriched primitive CML stem cells with reduced metabolic gene expression. Persistent CML stem cells also showed metabolic adaptation to TKI treatment through altered substrate use and mitochondrial respiration maintenance. Evaluation of transcription factors underlying these changes helped detect increased HIF-1 protein levels and activity in TKI-treated stem cells. Treatment with an HIF-1 inhibitor in combination with TKI treatment depleted murine and human CML stem cells. HIF-1 inhibition increased mitochondrial activity and reactive oxygen species (ROS) levels, reduced quiescence, increased cycling, and reduced the self-renewal and regenerating potential of dormant CML stem cells. We, therefore, identified the HIF-1-mediated inhibition of OXPHOS and ROS and maintenance of CML stem cell dormancy and repopulating potential as a key mechanism of CML stem cell adaptation to TKI treatment. Our results identify a key metabolic dependency in CML stem cells persisting after TKI treatment that can be targeted to enhance their elimination.


Assuntos
Leucemia Mielogênica Crônica BCR-ABL Positiva , Proteínas Tirosina Quinases , Camundongos , Humanos , Animais , Proteínas Tirosina Quinases/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Espécies Reativas de Oxigênio/metabolismo , Células-Tronco Neoplásicas/metabolismo , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/metabolismo , Resistencia a Medicamentos Antineoplásicos
8.
Mol Ther ; 31(7): 2042-2055, 2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-37016576

RESUMO

We reported previously that ß-site amyloid precursor protein cleaving enzyme (BACE1) is strongly expressed in the normal retina and that BACE1-/- mice develop pathological phenotypes associated with age-related macular degeneration (AMD). BACE1 expression is increased within the neural retina and retinal pigment epithelium (RPE) in AMD donor eyes suggesting that increased BACE1 is compensatory. We observed that AAV-mediated BACE1 overexpression in the RPE was maintained up to 6 months after AAV1-BACE1 administration. No significant changes in normal mouse visual function or retinal morphology were observed with low-dose vector while the high-dose vector demonstrated some early pathology which regressed with time. No increase in ß-amyloid was observed. BACE1 overexpression in the RPE of the superoxide dismutase 2 knockdown (SOD2 KD) mouse, which exhibits an AMD-like phenotype, prevented loss of retinal function and retinal pathology, and this was sustained out to 6 months. Furthermore, BACE1 overexpression was able to inhibit oxidative stress, microglial changes, and loss of RPE tight junction integrity (all features of AMD) in SOD2 KD mice. In conclusion, BACE1 plays a key role in retina/RPE homeostasis, and BACE1 overexpression offers a novel therapeutic target in the treatment of AMD.


Assuntos
Secretases da Proteína Precursora do Amiloide , Degeneração Macular , Animais , Camundongos , Secretases da Proteína Precursora do Amiloide/genética , Secretases da Proteína Precursora do Amiloide/metabolismo , Ácido Aspártico Endopeptidases/genética , Degeneração Macular/genética , Degeneração Macular/prevenção & controle , Retina/metabolismo , Epitélio Pigmentado da Retina/metabolismo
9.
Transl Vis Sci Technol ; 12(4): 20, 2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-37070938

RESUMO

Purpose: The expression of silent information regulator (SIRT) 1 is reduced in diabetic retinopathy (DR). Previous studies showed that alterations in SIRT1 messenger RNA (mRNA) and protein expression are implicated in progressive inflammation and formation of retinal acellular capillaries. Treatment with the SIRT1 agonist, SRT1720, improved visual response by restoration of a- and b-wave responses on electroretinogram scotopic measurements in diabetic (db/db) mice. In this study, we investigated the effects of intravitreal SIRT1 delivery on diabetic retinal pathology. Methods: Nine-month-old db/db mice received one intravitreal injection of either AAV2-SIRT1 or AAV2-GFP control virus, and after 3 months, electroretinography and optomotor responses were measured. Their eyes were then removed and analyzed by immunohistochemistry and flow cytometry. Results: SIRT1 mRNA and protein levels were increased following AAV2-SIRT1 administration compared to control virus AAV2-GFP injected mice. IBA1+ and caspase 3 expression were decreased in retinas of db/db mice injected with AAV2-SIRT1, and reductions in scotopic a- and b-waves and high spatial frequency in optokinetic response were prevented. Retinal hypoxia inducible factor 1α (HIF-1α) protein levels were reduced in the AAV2-SIRT1-injected mice compared to control-injected mice. Using flow cytometry to assess changes in intracellular HIF-1α levels, endothelial cells (CD31+) from AAV-2 SIRT1 injected mice demonstrated reduced HIF-1α expression compared to db/db mice injected with the control virus. Conclusions: Intravitreal AAV2-SIRT1 delivery increased retina SIRT1 and transduced neural and endothelial cells, thus reversing functional damage and improving overall visual function. Translational Relevance: AAV2-SIRT1 gene therapy represents a beneficial approach for the treatment of chronic retinal conditions such as DR.


Assuntos
Diabetes Mellitus Tipo 2 , Retinopatia Diabética , Camundongos , Animais , Retinopatia Diabética/genética , Retinopatia Diabética/terapia , Sirtuína 1/genética , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/terapia , Células Endoteliais/metabolismo , Modelos Animais de Doenças , RNA Mensageiro
10.
J Clin Med ; 12(5)2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36902558

RESUMO

Intestinal lymphatic, known as lacteal, plays a critical role in maintaining intestinal homeostasis by regulating several key functions, including the absorption of dietary lipids, immune cell trafficking, and interstitial fluid balance in the gut. The absorption of dietary lipids relies on lacteal integrity, mediated by button-like and zipper-like junctions. Although the intestinal lymphatic system is well studied in many diseases, including obesity, the contribution of lacteals to the gut-retinal axis in type 1 diabetes (T1D) has not been examined. Previously, we showed that diabetes induces a reduction in intestinal angiotensin-converting enzyme 2 (ACE2), leading to gut barrier disruption. However, when ACE2 levels are maintained, a preservation of gut barrier integrity occurs, resulting in less systemic inflammation and a reduction in endothelial cell permeability, ultimately retarding the development of diabetic complications, such as diabetic retinopathy. Here, we examined the impact of T1D on intestinal lymphatics and circulating lipids and tested the impact of intervention with ACE-2-expressing probiotics on key aspects of gut and retinal function. Akita mice with 6 months of diabetes were orally gavaged LP-ACE2 (3x/week for 3 months), an engineered probiotic (Lactobacillus paracasei; LP) expressing human ACE2. After three months, immunohistochemistry (IHC) was used to evaluate intestinal lymphatics, gut epithelial, and endothelial barrier integrity. Retinal function was assessed using visual acuity, electroretinograms, and enumeration of acellular capillaries. LP-ACE2 significantly restored intestinal lacteal integrity as assessed by the increased expression of lymphatic vessel hyaluronan receptor 1 (LYVE-1) expression in LP-ACE2-treated Akita mice. This was accompanied by improved gut epithelial (Zonula occludens-1 (ZO-1), p120-catenin) and endothelial (plasmalemma vesicular protein -1 (PLVAP1)) barrier integrity. In Akita mice, the LP-ACE2 treatment reduced plasma levels of LDL cholesterol and increased the expression of ATP-binding cassette subfamily G member 1 (ABCG1) in retinal pigment epithelial cells (RPE), the population of cells responsible for lipid transport from the systemic circulation into the retina. LP-ACE2 also corrected blood-retinal barrier (BRB) dysfunction in the neural retina, as observed by increased ZO-1 and decreased VCAM-1 expression compared to untreated mice. LP-ACE2-treated Akita mice exhibit significantly decreased numbers of acellular capillaries in the retina. Our study supports the beneficial role of LP-ACE2 in the restoration of intestinal lacteal integrity, which plays a key role in gut barrier integrity and systemic lipid metabolism and decreased diabetic retinopathy severity.

11.
Am J Pathol ; 193(11): 1789-1808, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-36965774

RESUMO

This study investigated retinal changes in a Western diet (WD)-induced nonhuman primate model of type 2 diabetes. Rhesus nonhuman primates, aged 15 to 17 years, were fed a high-fat diet (n = 7) for >5 years reflective of the traditional WD. Age-matched controls (n = 6) were fed a standard laboratory primate diet. Retinal fundus photography, optical coherence tomography, autofluorescence imaging, and fluorescein angiography were performed before euthanasia. To assess diabetic retinopathy (DR), eyes were examined using trypsin digests, lipofuscin autofluorescence, and multimarker immunofluorescence on cross-sections and whole mounts. Retinal imaging showed venous engorgement and tortuosity, aneurysms, macular exudates, dot and blot hemorrhages, and a marked increase in fundus autofluorescence. Post-mortem changes included the following: decreased CD31 blood vessel density (P < 0.05); increased acellular capillaries (P < 0.05); increased density of ionized calcium-binding adaptor molecule expressing amoeboid microglia/macrophage; loss of regular distribution in stratum and spacing typical of ramified microglia; and increased immunoreactivity of aquaporin 4 and glial fibrillary acidic protein (P < 0.05). However, rhodopsin immunoreactivity (P < 0.05) in rods and neuronal nuclei antibody-positive neuronal density of 50% (P < 0.05) were decreased. This is the first report of a primate model of DR solely induced by a WD that replicates key features of human DR.


Assuntos
Diabetes Mellitus Tipo 2 , Retinopatia Diabética , Animais , Humanos , Retinopatia Diabética/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Diabetes Mellitus Tipo 2/complicações , Dieta Ocidental , Vasos Retinianos/metabolismo , Primatas , Tomografia de Coerência Óptica/métodos
12.
Blood Adv ; 7(15): 4200-4214, 2023 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-36920790

RESUMO

Several independent lines of evidence suggest that megakaryocytes are dysfunctional in severe COVID-19. Herein, we characterized peripheral circulating megakaryocytes in a large cohort of inpatients with COVID-19 and correlated the subpopulation frequencies with clinical outcomes. Using peripheral blood, we show that megakaryocytes are increased in the systemic circulation in COVID-19, and we identify and validate S100A8/A9 as a defining marker of megakaryocyte dysfunction. We further reveal a subpopulation of S100A8/A9+ megakaryocytes that contain severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) protein and RNA. Using flow cytometry of peripheral blood and in vitro studies on SARS-CoV-2-infected primary human megakaryocytes, we demonstrate that megakaryocytes can transfer viral antigens to emerging platelets. Mechanistically, we show that SARS-CoV-2-containing megakaryocytes are nuclear factor κB (NF-κB)-activated, via p65 and p52; express the NF-κB-mediated cytokines interleukin-6 (IL-6) and IL-1ß; and display high surface expression of Toll-like receptor 2 (TLR2) and TLR4, canonical drivers of NF-κB. In a cohort of 218 inpatients with COVID-19, we correlate frequencies of megakaryocyte subpopulations with clinical outcomes and show that SARS-CoV-2-containing megakaryocytes are a strong risk factor for mortality and multiorgan injury, including respiratory failure, mechanical ventilation, acute kidney injury, thrombotic events, and intensive care unit admission. Furthermore, we show that SARS-CoV-2+ megakaryocytes are present in lung and brain autopsy tissues from deceased donors who had COVID-19. To our knowledge, this study offers the first evidence implicating SARS-CoV-2+ peripheral megakaryocytes in severe disease and suggests that circulating megakaryocytes warrant investigation in inflammatory disorders beyond COVID-19.


Assuntos
COVID-19 , Humanos , SARS-CoV-2 , Megacariócitos/metabolismo , NF-kappa B/metabolismo , Pulmão/metabolismo
13.
Circ Res ; 132(1): e1-e21, 2023 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-36448480

RESUMO

BACKGROUND: We examined components of systemic and intestinal renin-angiotensin system on gut barrier permeability, glucose homeostasis, systemic inflammation, and progression of diabetic retinopathy (DR) in human subjects and mice with type 1 diabetes (T1D). METHODS: T1D individual with (n=18) and without (n=20) DR and controls (n=34) were examined for changes in gut-regulated components of the immune system, gut leakage markers (FABP2 [fatty acid binding protein 2] and peptidoglycan), and Ang II (angiotensin II); Akita mice were orally administered a Lactobacillus paracasei (LP) probiotic expressing humanized ACE2 (angiotensin-converting enzyme 2) protein (LP-ACE2) as either a prevention or an intervention. Akita mice with genetic overexpression of humanAce2 by small intestine epithelial cells (Vil-Cre.hAce2KI-Akita) were similarly examined. After 9 months of T1D, circulatory, enteral, and ocular end points were assessed. RESULTS: T1D subjects exhibit elevations in gut-derived circulating immune cells (ILC1 cells) and higher gut leakage markers, which were positively correlated with plasma Ang II and DR severity. The LP-ACE2 prevention cohort and genetic overexpression of intestinal ACE2 preserved barrier integrity, reduced inflammatory response, improved hyperglycemia, and delayed development of DR. Improvements in glucose homeostasis were due to intestinal MasR activation, resulting in a GSK-3ß (glycogen synthase kinase-3 beta)/c-Myc (cellular myelocytomatosis oncogene)-mediated decrease in intestinal glucose transporter expression. In the LP-ACE2 intervention cohort, gut barrier integrity was improved and DR reversed, but no improvement in hyperglycemia was observed. These data support that the beneficial effects of LP-ACE2 on DR are due to the action of ACE2, not improved glucose homeostasis. CONCLUSIONS: Dysregulated systemic and intestinal renin-angiotensin system was associated with worsening gut barrier permeability, gut-derived immune cell activation, systemic inflammation, and progression of DR in human subjects. In Akita mice, maintaining intestinal ACE2 expression prevented and reversed DR, emphasizing the multifaceted role of the intestinal renin-angiotensin system in diabetes and DR.


Assuntos
Diabetes Mellitus Tipo 1 , Retinopatia Diabética , Hiperglicemia , Animais , Humanos , Camundongos , Enzima de Conversão de Angiotensina 2/metabolismo , Diabetes Mellitus Tipo 1/complicações , Diabetes Mellitus Tipo 1/metabolismo , Retinopatia Diabética/prevenção & controle , Glucose/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Hiperglicemia/complicações , Inflamação/metabolismo , Intestino Delgado , Fragmentos de Peptídeos/metabolismo , Peptidil Dipeptidase A/genética , Sistema Renina-Angiotensina/fisiologia
14.
Methods Mol Biol ; 2582: 323-334, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36370360

RESUMO

Vascular stiffness is an independent predictor of human vascular diseases and is linked to ischemia, diabetes, high blood pressure, hyperlipidemia, and/or aging. Blood vessel stiffening increases owing to changes in the microscale architecture and/or content of extracellular, cytoskeletal, and nuclear matrix proteins. These alterations, while best appreciated in large blood vessels, also gradually occur in the microvasculature and play an important role in the initiation and progression of numerous microangiopathies including diabetic retinopathy. Although macroscopic measurements of arterial stiffness by pulse wave velocity are often used for clinical diagnosis, stiffness changes of intact microvessels and their causative factors have not been characterized. Herein, we describe the use of atomic force microscopy (AFM) to determine stiffness of mouse retinal capillaries and assess its regulation by the cellular communication network (CCN) 1, a stiffness-sensitive gene-encoded matricellular protein. AFM yields reproducible measurements of retinal capillary stiffness in lightly fixed freshly isolated retinal flat mounts. AFM measurements also show significant changes in compliance properties of the retinal microvasculature of mice with endothelial-specific deletion of CCN1, indicating that CCN1 expression, or lack thereof, affects the mechanical properties of microvascular cells in vivo. Thus, AFM has the force sensitivity and the spatial resolution necessary to measure the local modulus of retinal capillaries in situ and eventually to investigate microvascular compliance heterogeneities as key components of disease pathogenesis.


Assuntos
Análise de Onda de Pulso , Doenças Vasculares , Camundongos , Humanos , Animais , Microscopia de Força Atômica , Retina/metabolismo , Endotélio , Microvasos , Doenças Vasculares/metabolismo
15.
Life (Basel) ; 12(12)2022 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-36556350

RESUMO

(1) Background: Retinal vascular imaging plays an essential role in diagnosing and managing chronic diseases such as diabetic retinopathy, sickle cell retinopathy, and systemic hypertension. Previously, we have shown that individuals with pulmonary arterial hypertension (PAH), a rare disorder, exhibit unique retinal vascular changes as seen using fluorescein angiography (FA) and that these changes correlate with PAH severity. This study aimed to determine if color fundus (CF) imaging could garner identical retinal information as previously seen using FA images in individuals with PAH. (2) Methods: VESGEN, computer software which provides detailed vascular patterns, was used to compare manual segmentations of FA to CF imaging in PAH subjects (n = 9) followed by deep learning (DL) processing of CF imaging to increase the speed of analysis and facilitate a noninvasive clinical translation. (3) Results: When manual segmentation of FA and CF images were compared using VESGEN analysis, both showed identical tortuosity and vessel area density measures. This remained true even when separating images based on arterial trees only. However, this was not observed with microvessels. DL segmentation when compared to manual segmentation of CF images showed similarities in vascular structure as defined by fractal dimension. Similarities were lost for tortuosity and vessel area density when comparing manual CF imaging to DL imaging. (4) Conclusions: Noninvasive imaging such as CF can be used with VESGEN to provide an accurate and safe assessment of retinal vascular changes in individuals with PAH. In addition to providing insight into possible future clinical translational use.

16.
Cells ; 11(20)2022 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-36291075

RESUMO

Hematopoietic cells play a crucial role in the adult retina in health and disease. Monocytes, macrophages, microglia and myeloid angiogenic cells (MACs) have all been implicated in retinal pathology. However, the role that hematopoietic cells play in retinal development is understudied. The temporal changes in recruitment of hematopoietic cells into the developing retina and the phenotype of the recruited cells are not well understood. In this study, we used the hematopoietic cell-specific protein Vav1 to track and investigate hematopoietic cells in the developing retina. By flow cytometry and immunohistochemistry, we show that hematopoietic cells are present in the retina as early as P0, and include microglia, monocytes and MACs. Even before the formation of retinal blood vessels, hematopoietic cells localize to the inner retina where they eventually form networks that intimately associate with the developing vasculature. Loss of Vav1 lead to a reduction in the density of medium-sized vessels and an increased inflammatory response in retinal astrocytes. When pups were subjected to oxygen-induced retinopathy, hematopoietic cells maintained a close association with the vasculature and occasionally formed 'frameworks' for the generation of new vessels. Our study provides further evidence for the underappreciated role of hematopoietic cells in retinal vasculogenesis and the formation of a healthy retina.


Assuntos
Retina , Vasos Retinianos , Animais , Animais Recém-Nascidos , Retina/metabolismo , Vasos Retinianos/metabolismo , Oxigênio/metabolismo , Microglia
17.
Exp Eye Res ; 224: 109216, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36041509

RESUMO

Age-related macular degeneration (AMD) is a complex disease with increasing numbers of individuals being afflicted and treatment modalities limited. There are strong interactions between diet, age, the metabolome, and gut microbiota, and all of these have roles in the pathogenesis of AMD. Communication axes exist between the gut microbiota and the eye, therefore, knowing how the microbiota influences the host metabolism during aging could guide a better understanding of AMD pathogenesis. While considerable experimental evidence exists for a diet-gut-eye axis from murine models of human ocular diseases, human diet-microbiome-metabolome studies are needed to elucidate changes in the gut microbiome at the taxonomic and functional levels that are functionally related to ocular pathology. Such studies will reveal new ways to diminish risk for progression of- or incidence of- AMD. Current data suggest that consuming diets rich in dark fish, fruits, vegetables, and low in glycemic index are most retina-healthful during aging.


Assuntos
Microbioma Gastrointestinal , Degeneração Macular , Microbiota , Humanos , Camundongos , Animais , Metaboloma , Dieta , Degeneração Macular/metabolismo
18.
Int J Mol Sci ; 23(16)2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-36012406

RESUMO

The gut is a well-established route of infection and target for viral damage by SARS-CoV-2. This is supported by the clinical observation that about half of COVID-19 patients exhibit gastrointestinal (GI) complications. We aimed to investigate whether the analysis of plasma could provide insight into gut barrier dysfunction in patients with COVID-19 infection. Plasma samples of COVID-19 patients (n = 146) and healthy individuals (n = 47) were collected during hospitalization and routine visits. Plasma microbiome was analyzed using 16S rRNA sequencing and gut permeability markers including fatty acid binding protein 2 (FABP2), peptidoglycan (PGN), and lipopolysaccharide (LPS) in both patient cohorts. Plasma samples of both cohorts contained predominately Proteobacteria, Firmicutes, Bacteroides, and Actinobacteria. COVID-19 subjects exhibit significant dysbiosis (p = 0.001) of the plasma microbiome with increased abundance of Actinobacteria spp. (p = 0.0332), decreased abundance of Bacteroides spp. (p = 0.0003), and an increased Firmicutes:Bacteroidetes ratio (p = 0.0003) compared to healthy subjects. The concentration of the plasma gut permeability marker FABP2 (p = 0.0013) and the gut microbial antigens PGN (p < 0.0001) and LPS (p = 0.0049) were significantly elevated in COVID-19 patients compared to healthy subjects. These findings support the notion that the intestine may represent a source for bacteremia and contribute to worsening COVID-19 outcomes. Therapies targeting the gut and prevention of gut barrier defects may represent a strategy to improve outcomes in COVID-19 patients.


Assuntos
Actinobacteria , COVID-19 , Microbioma Gastrointestinal , Microbiota , Actinobacteria/genética , Bactérias/genética , Disbiose/microbiologia , Fezes/microbiologia , Firmicutes/genética , Microbioma Gastrointestinal/genética , Humanos , Lipopolissacarídeos , Peptidoglicano , RNA Ribossômico 16S/genética , SARS-CoV-2
19.
Pulm Circ ; 12(1): e12035, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35506088

RESUMO

Pulmonary arterial hypertension (PAH) is classically considered an isolated small vessel vasculopathy of the lungs with peripheral pulmonary vascular obliteration. Systemic manifestations of PAH are increasingly acknowledged, but data remain limited. We hypothesized that retinal vascular changes occur in PAH. PAH subjects underwent retinal fluorescein angiography (FA) and routine disease severity measures were collected from the medical record. FA studies were analyzed using VESsel GENerational Analysis (VESGEN), a noninvasive, user-interactive computer software that assigns branching generation to large and small vessels. FAs from controls (n = 8) and PAH subjects (n = 9) were compared. The tortuosity of retinal arteries was higher in PAH subjects compared to unmatched controls (1.17, 95% confidence interval: [1.14, 1.20] in PAH vs. 1.13, 95% CI: [1.12, 1.14] in controls, p = 0.01). Venous tortuosity was higher and more variable in PAH (1.17, 95% CI: [1.14, 1.20]) compared to controls (1.13, 95% CI: [1.12, 1.15]), p = 0.02. PAH subjects without connective tissue disease had the highest degree of retinal tortuosity relative to controls (arterial, p = 0.01; venous, p = 0.03). Younger PAH subjects had greater retinal arterial tortuosity, which attenuated with age and was not observed in controls. Retinal vascular parameters correlated with some clinical measures of disease in PAH subjects. In conclusion, PAH subjects exhibit higher retinal vascular tortuosity. Retinal vascular changes may track with pulmonary vascular disease progression. Use of FA and VESGEN may facilitate early, noninvasive detection of PAH.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...