Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Bio Mater ; 6(6): 2415-2425, 2023 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-37272968

RESUMO

This study reports the development of a class of eco-friendly antifouling biocides based on a cyclic dipeptide scaffold, 2,5-diketopiperazine (2,5-DKP). The lead compound cyclo(N-Bip-l-Arg-N-Bip-l-Arg) (1) was synthesized in gram amounts and used to assess the compatibility with an ablation/hydration coating, efficacy against biofouling, and biodegradation. Leaching of 1 from the coating into seawater was assessed via a rotating drum method, revealing relatively stable and predictable leaching rates under dynamic shear stress conditions (36.1 ± 19.7 to 25.2 ± 9.1 ng-1 cm-2 day-1) but low or no leaching under static conditions. The coatings were further analyzed using time-of-flight secondary ion mass spectrometry (ToF-SIMS), with 1 seen to localize at the surface of the coating in a surfactant-like fashion. When coatings were deployed in the ocean, detectable reductions in biofouling development were measured for up to 11 weeks. After this time, biofouling overwhelmed the performance of the coating, consistent with leaching kinetics. Biodegradation of 1 in seawater was assessed using theoretical oxygen demand and analytical quantification. Masking effects were observed at higher concentrations of 1 due to antimicrobial properties, but half-lives were calculated ranging from 13.4 to 16.2 days. The results can rationally inform future development toward commercial antifouling products.


Assuntos
Incrustação Biológica , Desinfetantes , Incrustação Biológica/prevenção & controle , Desinfetantes/farmacologia , Desinfetantes/química , Peptídeos , Cinética
2.
Org Biomol Chem ; 20(47): 9431-9446, 2022 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-36408605

RESUMO

Marine biofouling is a problem that plagues all maritime industries at vast economic and environmental cost. Previous and current methods to prevent biofouling have employed the use of heavy metals and other toxic or highly persistent chemicals, and these methods are now coming under immense regulatory pressure. Recent studies have illustrated the potential of nature-inspired tetrasubstituted 2,5-diketopiperazines (2,5-DKPs) as eco-friendly marine biocides for biofouling control. These highly active symmetrically substituted 2,5-DKPs can be generated by combining structural motifs from cationic innate defence peptides and natural marine antifoulants. A balance between a threshold hydrophobic contribution and sufficient cationic charge has been established as key for bioactivity, and our current study further increases understanding of the antifouling mechanism by investigating the effect of both regio- and stereochemistry. Novel synthetic routes for the generation of unsymmetrical 2,5-DKPs were developed and a library of nine compounds was prepared. The compounds were screened against a series of four model macrofouling organisms (Ciona savignyi, Mytilus galloprovincialis, Spirobranchus cariniferus, and Undaria pinnatifida). Several of the evaluated compounds displayed inhibitory activity at sub-micromolar concentrations. The structural contributions to antifouling bioactivity were studied using NMR spectroscopy and molecular modelling, revealing a strong dependence on a stable amphiphilic solution structure regardless of substitution pattern.


Assuntos
Dicetopiperazinas , Dicetopiperazinas/farmacologia
3.
ACS Med Chem Lett ; 13(4): 632-640, 2022 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-35450374

RESUMO

Antimicrobial drug resistance is a looming health crisis facing us in the modern era, and new drugs are urgently needed to combat this growing problem. Synthetic mimics of antimicrobial peptides have recently emerged as a promising class of compounds for the treatment of persistent microbial infections. In the current study, we investigate five cyclic N-alkylated amphiphilic 2,5-diketopiperazines against 15 different strains of bacteria and fungi, including drug-resistant clinical isolates. Several of the 2,5-diketopiperazines displayed activities similar or superior to antibiotics currently in clinical use, with activities coupled to both the cationic and hydrophobic substituents. All possible stereoisomers of the lead peptide were prepared, and the effects of stereochemistry and amphiphilicity were investigated via 1D and 2D NMR spectroscopy, solution dynamics, and membrane interaction modeling. Clear differences in solution structures and membrane interaction potentials explain the differences seen in the bioactivity and physicochemical properties of each stereoisomer.

4.
Sci Total Environ ; 812: 152487, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-34953845

RESUMO

Marine biofouling plagues all maritime industries at vast economic and environmental cost. Previous and most current methods to control biofouling have employed highly persistent toxins and heavy metals, including tin, copper, and zinc. These toxic methods are resulting in unacceptable environmental harm and are coming under immense regulatory pressure. Eco-friendly alternatives are urgently required to effectively mitigate the negative consequence of biofouling without causing collateral harm. Amphiphilic micropeptides have recently been shown to exhibit excellent broad-spectrum antifouling activity, with a non-toxic mode of action and innate biodegradability. The present work focused on incorporating the pharmacophore derived from amphiphilic micropeptides into a 2,5-diketopiperazine (DKP) scaffold. This privileged structure is present in a vast number of natural products, including marine natural product antifoulants, and provides advantages of synthetic accessibility and adaptability. A novel route to symmetrical tetrasubstituted DKPs was developed and a library of amphiphilic 2,5-DKPs were subsequently synthesised. These biodegradable compounds were demonstrated to be potent marine antifoulants displaying broad-spectrum activity in the low micromolar range against a range of common marine fouling organisms. The outcome of planned coating and field trials will dictate the future development of the lead compounds.


Assuntos
Incrustação Biológica , Desinfetantes , Organismos Aquáticos , Incrustação Biológica/prevenção & controle , Dicetopiperazinas , Desinfetantes/toxicidade
5.
Acc Chem Res ; 52(3): 749-759, 2019 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-30829472

RESUMO

The alarming rate at which micro-organisms are developing resistance to conventional antibiotics represents one of the global challenges of our time. There is currently ample space in the antibacterial drug pipeline, and scientists are trying to find innovative and novel strategies to target the microbial enemies. Nature has remained a source of inspiration for most of the antibiotics developed and used, and the immune molecules produced by the innate defense systems, as a first line of defense, have been heralded as the next source of antibiotics. Most living organisms produce an arsenal of antimicrobial peptides (AMPs) to rapidly fend off intruding pathogens, and several different attempts have been made to transform this versatile group of compounds into the next generation of antibiotics. However, faced with the many hurdles of using peptides as drugs, the success of these defense molecules as therapeutics remains to be realized. AMPs derived from the proteolytic degradation of the innate defense protein lactoferrin have been shown to display several favorable antimicrobial properties. In an attempt to investigate the biological and pharmacological properties of these much shorter AMPs, the sequence dependence was investigated, and it was shown, through a series of truncation experiments, that these AMPs in fact can be prepared as tripeptides, with improved antimicrobial activity, via the incorporation of unnatural hydrophobic residues and terminal cappings. In this Account, we describe how this class of promising cationic tripeptides has been developed to specifically address the main challenges limiting the general use of AMPs. This has been made possible through the identification of the antibacterial pharmacophore and via the incorporation of a range of unnatural hydrophobic and cationic amino acids. Incorporation of these residues at selected positions has allowed us to extensively establish how these compounds interact with the major proteolytic enzymes trypsin and chymotrypsin and also the two major drug-binding plasma proteins serum albumin and α-1 glycoprotein. Several of the challenges associated with using AMPs relate to their size, susceptibility to rapid proteolytic degradation, and poor oral bioavailability. Our studies have addressed these issues in detail, and the results have allowed us to effectively design and prepare active and metabolically stable AMPs that have been evaluated in a range of functional settings. The optimized short AMPs display inhibitory activities against a plethora of micro-organisms at low micromolar concentrations, and they have been shown to target resistant strains of both bacteria and fungi alike with a very rapid mode of action. Our Account further describes how these compounds behave in in vivo experiments and highlights both the challenges and possibilities of the intriguing compounds. In several areas, they have been shown to exhibit comparable or superior activity to established antibacterial, antifungal, and antifouling commercial products. This illustrates their ability to effectively target and eradicate various microbes in a variety of settings ranging from the ocean to the clinic.


Assuntos
Antibacterianos/farmacologia , Antifúngicos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Lactoferrina/farmacologia , Fragmentos de Peptídeos/farmacologia , Animais , Antibacterianos/farmacocinética , Antifúngicos/farmacocinética , Peptídeos Catiônicos Antimicrobianos/farmacocinética , Candida/efeitos dos fármacos , Humanos , Lactoferrina/farmacocinética , Camundongos , Testes de Sensibilidade Microbiana , Fragmentos de Peptídeos/farmacocinética , Staphylococcus aureus/efeitos dos fármacos , Trichophyton/efeitos dos fármacos , Xenopus laevis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...