Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 107
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 63(17): e202401541, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38393988

RESUMO

Veillonella parvula, prototypical member of the oral and gut microbiota, is at times commensal yet also potentially pathogenic. The definition of the molecular basis tailoring this contrasting behavior is key for broadening our understanding of the microbiota-driven pathogenic and/or tolerogenic mechanisms that take place within our body. In this study, we focused on the chemistry of the main constituent of the outer membrane of V. parvula, the lipopolysaccharide (LPS). LPS molecules indeed elicit pro-inflammatory and immunomodulatory responses depending on their chemical structures. Herein we report the structural elucidation of the LPS from two strains of V. parvula and show important and unprecedented differences in both the lipid and carbohydrate moieties, including the identification of a novel galactofuranose and mannitol-containing O-antigen repeating unit for one of the two strains. Furthermore, by harnessing computational studies, in vitro human cell models, as well as lectin binding solid-phase assays, we discovered that the two chemically diverse LPS immunologically behave differently and have attempted to identify the molecular determinant(s) governing this phenomenon. Whereas pro-inflammatory potential has been evidenced for the lipid A moiety, by contrast a plausible "immune modulating" action has been proposed for the peculiar O-antigen portion.


Assuntos
Lipopolissacarídeos , Antígenos O , Humanos , Lipopolissacarídeos/farmacologia , Lipopolissacarídeos/metabolismo , Antígenos O/metabolismo , Veillonella/metabolismo , Lipídeo A
3.
5.
Mucosal Immunol ; 16(3): 326-340, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37004750

RESUMO

iNKT cells account for a relevant fraction of effector T-cells in the intestine and are considered an attractive platform for cancer immunotherapy. Although iNKT cells are cytotoxic lymphocytes, their functional role in colorectal cancer (CRC) is still controversial, limiting their therapeutic use. Thus, we examined the immune cell composition and iNKT cell phenotype of CRC lesions in patients (n = 118) and different murine models. High-dimensional single-cell flow-cytometry, metagenomics, and RNA sequencing experiments revealed that iNKT cells are enriched in tumor lesions. The tumor-associated pathobiont Fusobacterium nucleatum induces IL-17 and Granulocyte-macrophage colony-stimulating factor (GM-CSF) expression in iNKT cells without affecting their cytotoxic capability but promoting iNKT-mediated recruitment of neutrophils with polymorphonuclear myeloid-derived suppressor cells-like phenotype and functions. The lack of iNKT cells reduced the tumor burden and recruitment of immune suppressive neutrophils. iNKT cells in-vivo activation with α-galactosylceramide restored their anti-tumor function, suggesting that iNKT cells can be modulated to overcome CRC-associated immune evasion. Tumor co-infiltration by iNKT cells and neutrophils correlates with negative clinical outcomes, highlighting the importance of iNKT cells in the pathophysiology of CRC. Our results reveal a functional plasticity of iNKT cells in CRC, suggesting a pivotal role of iNKT cells in shaping the tumor microenvironment, with relevant implications for treatment.


Assuntos
Antineoplásicos , Neoplasias Colorretais , Células T Matadoras Naturais , Camundongos , Animais , Neutrófilos , Antineoplásicos/farmacologia , Imunoterapia , Neoplasias Colorretais/patologia , Microambiente Tumoral
6.
Eur J Immunol ; 53(4): e2149702, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36722608

RESUMO

Psoriasis is a chronic inflammatory skin disease with an autoimmune component and associated with joint inflammation in up to 30% of cases. To investigate autoreactive T cells, we developed an imiquimod-induced psoriasis-like inflammation model in K5-mOVA.tg C57BL/6 mice expressing ovalbumin (OVA) on the keratinocyte membrane, adoptively transferred with OT-I OVA-specific CD8+ T cells. We evaluated the expansion of OT-I CD8+ T cells and their localization in skin, blood, and spleen. scRNA-seq and TCR sequencing data from patients with psoriatic arthritis were also analyzed. In the imiquimod-treated K5-mOVA.tg mouse model, OT-I T cells were markedly expanded in the skin and blood at early time points. OT-I T cells in the skin showed mainly CXCR3+ effector memory phenotype, whereas in peripheral blood there was an expansion of CCR4+ CXCR3+ OT-I cells. At a later time point, expanded OVA-specific T-cell population was found in the spleen. In patients with psoriatic arthritis, scRNA-seq and TCR sequencing data showed clonal expansion of CCR4+ TCM cells in the circulation and further expansion in the synovial fluid. Importantly, there was a clonotype overlap between CCR4+ TCM in the peripheral blood and CD8+ T-cell effectors in the synovial fluid. This mechanism could play a role in the generation and spreading of autoreactive T cells to the synovioentheseal tissues in psoriasis patients at risk of developing psoriatic arthritis.


Assuntos
Artrite Psoriásica , Psoríase , Dermatopatias , Humanos , Camundongos , Animais , Linfócitos T CD8-Positivos , Imiquimode , Camundongos Endogâmicos C57BL , Inflamação , Receptores de Antígenos de Linfócitos T/genética , Receptores CCR4
7.
Carbohydr Polym ; 302: 120395, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36604073

RESUMO

In cancer microenvironment, aberrant glycosylation events of ECM proteins and cell surface receptors occur. We developed a protocol to generate 3D bioprinted models of colorectal cancer (CRC) crosslinking hyaluronic acid and gelatin functionalized with three signalling glycans characterized in CRC, 3'-Sialylgalactose, 6'-Sialylgalactose and 2'-Fucosylgalactose. The crosslinking, performed exploiting azide functionalized gelatin and hyaluronic acid and 4arm-PEG-dibenzocyclooctyne, resulted in biocompatible hydrogels that were 3D bioprinted with commercial CRC cells HT-29 and patient derived CRC tumoroids. The glycosylated hydrogels showed good 3D printability, biocompatibility and stability over the time. SEM and synchrotron radiation SAXS/WAXS analysis revealed the influence of glycosylation in the construct morphology, whereas MALDI-MS imaging showed that protein profiles of tumoroid cells vary with glycosylation, indicating that sialylation and fucosylation of ECM proteins induce diverse alterations to the proteome of the tumoroid and surrounding cells.


Assuntos
Neoplasias Colorretais , Ácido Hialurônico , Humanos , Gelatina/farmacologia , Espalhamento a Baixo Ângulo , Difração de Raios X , Polissacarídeos , Hidrogéis/farmacologia , Engenharia Tecidual/métodos , Alicerces Teciduais , Microambiente Tumoral
8.
Eur J Immunol ; 53(1): e2250238, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36398486

RESUMO

It is well known that regulatory T-cells (Tregs) are required to prevent autoimmunity, but they may also have some less-well understood immune-stimulatory effects. In particular, in CD8+ T-cell responses Tregs select high-affinity clones upon priming and promote memory by inhibiting inflammation-dependent generation of short-lived effector cells. In the current issue of the European Journal of Immunology [Eur. J. Immunol. 2023. 53: 2149400], Madi et al. report the surprising finding that human and murine FOXP3+ Tregs are a physiologically relevant source of IL-15, a homeostatic cytokine that promotes antigen-independent maintenance of CD8+ memory T-cells. In mice that lack IL-15 selectively in FOXP3+ Tregs the authors show that the composition of the CD8+ T-cell memory pool is altered in the absence of Treg-derived IL-15, since a subset of terminally effector memory cells is drastically reduced. Otherwise Treg-derived IL-15 is dispensable for antiviral immune responses and the generation of anti-viral CD8+ memory T-cells. These findings add to our understanding of the multifaceted role of Tregs in immune responses, and how IL-15 derived from different cellular sources maintains anti-viral T-cell memory.


Assuntos
Antineoplásicos , Linfócitos T Reguladores , Camundongos , Humanos , Animais , Linfócitos T Citotóxicos , Interleucina-15 , Células T de Memória , Linfócitos T CD8-Positivos , Fatores de Transcrição Forkhead , Interleucina-2
9.
iScience ; 25(10): 105042, 2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36124235

RESUMO

Calcineurin (CN) inhibitors currently used to avoid transplant rejection block the activation of adaptive immune responses but also prevent the development of tolerance toward the graft, by directly inhibiting T cells. CN, through the transcription factors of the NFAT family, plays an important role also in the differentiation dendritic cells (DCs), the main cells responsible for the activation of T lymphocytes. Therefore, we hypothesized that the inhibition of CN only in DCs and not in T cells could be sufficient to prevent T cell responses, while allowing for the development of tolerance. Here, we show that inhibition of CN/NFAT pathway in innate myeloid cells, using a new nanoconjugate capable of selectively targeting phagocytes in vivo, protects against graft rejection and induces a longer graft acceptance compared to common CN inhibitors. We propose a new generation of nanoparticles-based selective immune suppressive agents for a better control of transplant acceptance.

10.
Front Immunol ; 13: 873195, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35757699

RESUMO

COVID-19 has proven to be particularly serious and life-threatening for patients presenting with pre-existing pathologies. Patients affected by rheumatic musculoskeletal disease (RMD) are likely to have impaired immune responses against SARS-CoV-2 infection due to their compromised immune system and the prolonged use of disease-modifying anti-rheumatic drugs (DMARDs), which include conventional synthetic (cs) DMARDs or biologic and targeted synthetic (b/ts) DMARDs. To provide an integrated analysis of the immune response following SARS-CoV-2 infection in RMD patients treated with different classes of DMARDs we carried out an immunological analysis of the antibody responses toward SARS-CoV-2 nucleocapsid and RBD proteins and an extensive immunophenotypic analysis of the major immune cell populations. We showed that RMD individuals under most DMARD treatments mount a sustained antibody response to the virus, with neutralizing activity. In addition, they displayed a sizable percentage of effector T and B lymphocytes. Among b-DMARDs, we found that anti-TNFα treatments are more favorable drugs to elicit humoral and cellular immune responses as compared to CTLA4-Ig and anti-IL6R inhibitors. This study provides a whole picture of the humoral and cellular immune responses in RMD patients by reassuring the use of DMARD treatments during COVID-19. The study points to TNF-α inhibitors as those DMARDs permitting elicitation of functional antibodies to SARS-CoV-2 and adaptive effector populations available to counteract possible re-infections.


Assuntos
Antirreumáticos , Tratamento Farmacológico da COVID-19 , Doenças Reumáticas , Antirreumáticos/uso terapêutico , Humanos , Imunossupressores/uso terapêutico , Doenças Reumáticas/tratamento farmacológico , SARS-CoV-2
11.
Biomol Concepts ; 13(1): 242-255, 2022 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-35446517

RESUMO

Super-resolution image acquisition has turned photo-activated far-infrared thermal imaging into a promising tool for the characterization of biological tissues. By the sub-diffraction localization of sparse temperature increments primed by the sample absorption of modulated focused laser light, the distribution of (endogenous or exogenous) photo-thermal biomarkers can be reconstructed at tunable ∼10-50 µm resolution. We focus here on the theoretical modeling of laser-primed temperature variations and provide the guidelines to convert super-resolved temperature-based images into quantitative maps of the absolute molar concentration of photo-thermal probes. We start from camera-based temperature detection via Stefan-Boltzmann's law, and elucidate the interplay of the camera point-spread-function and pixelated sensor size with the excitation beam waist in defining the amplitude of the measured temperature variations. This can be accomplished by the numerical solution of the three-dimensional heat equation in the presence of modulated laser illumination on the sample, which is characterized in terms of thermal diffusivity, conductivity, thickness, and concentration of photo-thermal species. We apply our data-analysis protocol to murine B16 melanoma biopsies, where melanin is mapped and quantified in label-free configuration at sub-diffraction 40 µm resolution. Our results, validated by an unsupervised machine-learning analysis of hematoxylin-and-eosin images of the same sections, suggest potential impact of super-resolved thermography in complementing standard histopathological analyses of melanocytic lesions.


Assuntos
Melanoma , Animais , Melanoma/diagnóstico por imagem , Melanoma/patologia , Camundongos , Termografia/métodos
12.
Biomed Opt Express ; 13(3): 1173-1187, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35414966

RESUMO

Surgical excision followed by histopathological examination is the gold standard for melanoma screening. However, the color-based inspection of hematoxylin-and-eosin-stained biopsies does not provide a space-resolved quantification of the melanin content in melanocytic lesions. We propose a non-destructive photo-thermal imaging method capable of characterizing the microscopic distribution and absolute concentration of melanin pigments in excised melanoma biopsies. By exploiting the photo-thermal effect primed by melanin absorption of visible laser light we obtain label-free super-resolution far-infrared thermal images of tissue sections where melanin is spatially mapped at sub-diffraction 40-µm resolution. Based on the finite-element simulation of the full 3D heat transfer model, we are able to convert temperature maps into quantitative images of the melanin molar concentration on B16 murine melanoma biopsies, with 4·10-4 M concentration sensitivity. Being readily applicable to human melanoma biopsies in combination with hematoxylin-and-eosin staining, the proposed approach could complement traditional histopathology in the characterization of pigmented lesions ex-vivo.

13.
Immunity ; 55(2): 224-236.e5, 2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-34995475

RESUMO

During gram-negative septicemia, interactions between platelets and neutrophils initiate a detrimental feedback loop that sustains neutrophil extracellular trap (NET) induction, disseminated intravascular coagulation, and inflammation. Understanding intracellular pathways that control platelet-neutrophil interactions is essential for identifying new therapeutic targets. Here, we found that thrombin signaling induced activation of the transcription factor NFAT in platelets. Using genetic and pharmacologic approaches, as well as iNFATuation, a newly developed mouse model in which NFAT activation can be abrogated in a cell-specific manner, we demonstrated that NFAT inhibition in activated murine and human platelets enhanced their activation and aggregation, as well as their interactions with neutrophils and NET induction. During gram-negative septicemia, NFAT inhibition in platelets promoted disease severity by increasing disseminated coagulation and NETosis. NFAT inhibition also partially restored coagulation ex vivo in patients with hypoactive platelets. Our results define non-transcriptional roles for NFAT that could be harnessed to address pressing clinical needs.


Assuntos
Plaquetas/efeitos dos fármacos , Fatores de Transcrição NFATC/antagonistas & inibidores , Agregação Plaquetária/efeitos dos fármacos , Sepse/patologia , Animais , Coagulação Sanguínea/efeitos dos fármacos , Plaquetas/metabolismo , Comunicação Celular/efeitos dos fármacos , Grânulos Citoplasmáticos/metabolismo , Modelos Animais de Doenças , Armadilhas Extracelulares/metabolismo , Humanos , Inflamação , Camundongos , Fatores de Transcrição NFATC/metabolismo , Neutrófilos/metabolismo , Receptores de Trombina/metabolismo , Sepse/metabolismo
14.
Eur J Immunol ; 52(1): 109-122, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34333764

RESUMO

Growing evidence suggests that conventional dendritic cells (cDCs) undergo aberrant maturation in COVID-19, which negatively affects T-cell activation. The presence of effector T cells in patients with mild disease and dysfunctional T cells in severely ill patients suggests that adequate T-cell responses limit disease severity. Understanding how cDCs cope with SARS-CoV-2 can help elucidate how protective immune responses are generated. Here, we report that cDC2 subtypes exhibit similar infection-induced gene signatures, with the upregulation of IFN-stimulated genes and IL-6 signaling pathways. Furthermore, comparison of cDCs between patients with severe and mild disease showed severely ill patients to exhibit profound downregulation of genes encoding molecules involved in antigen presentation, such as MHCII, TAP, and costimulatory proteins, whereas we observed the opposite for proinflammatory molecules, such as complement and coagulation factors. Thus, as disease severity increases, cDC2s exhibit enhanced inflammatory properties and lose antigen presentation capacity. Moreover, DC3s showed upregulation of anti-apoptotic genes and accumulated during infection. Direct exposure of cDC2s to the virus in vitro recapitulated the activation profile observed in vivo. Our findings suggest that SARS-CoV-2 interacts directly with cDC2s and implements an efficient immune escape mechanism that correlates with disease severity by downregulating crucial molecules required for T-cell activation.


Assuntos
COVID-19/imunologia , Células Dendríticas/imunologia , Ativação Linfocitária , SARS-CoV-2/imunologia , Transdução de Sinais/imunologia , Linfócitos T/imunologia , Humanos
15.
Clin Sci (Lond) ; 135(19): 2217-2242, 2021 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-34623425

RESUMO

The ability of dendritic cells (DCs) to sense viral pathogens and orchestrate a proper immune response makes them one of the key players in antiviral immunity. Different DC subsets have complementing functions during viral infections, some specialize in antigen presentation and cross-presentation and others in the production of cytokines with antiviral activity, such as type I interferons. In this review, we summarize the latest updates concerning the role of DCs in viral infections, with particular focus on the complex interplay between DC subsets and severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Despite being initiated by a vast array of immune receptors, DC-mediated antiviral responses often converge towards the same endpoint, that is the production of proinflammatory cytokines and the activation of an adaptive immune response. Nonetheless, the inherent migratory properties of DCs make them a double-edged sword and often viral recognition by DCs results in further viral dissemination. Here we illustrate these various aspects of the antiviral functions of DCs and also provide a brief overview of novel antiviral vaccination strategies based on DCs targeting.


Assuntos
COVID-19/virologia , Células Dendríticas/virologia , Receptores de Reconhecimento de Padrão/imunologia , SARS-CoV-2/patogenicidade , Viroses/virologia , Citocinas/imunologia , Células Dendríticas/imunologia , Humanos , Viroses/imunologia
16.
Sci Immunol ; 6(62)2021 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-34376481

RESUMO

To understand how a protective immune response against SARS-CoV-2 develops over time, we integrated phenotypic, transcriptional and repertoire analyses on PBMCs from mild and severe COVID-19 patients during and after infection, and compared them to healthy donors (HD). A type I IFN-response signature marked all the immune populations from severe patients during the infection. Humoral immunity was dominated by IgG production primarily against the RBD and N proteins, with neutralizing antibody titers increasing post infection and with disease severity. Memory B cells, including an atypical FCRL5+ T-BET+ memory subset, increased during the infection, especially in patients with mild disease. A significant reduction of effector memory, CD8+ T cells frequency characterized patients with severe disease. Despite such impairment, we observed robust clonal expansion of CD8+ T lymphocytes, while CD4+ T cells were less expanded and skewed toward TCM and TH2-like phenotypes. MAIT cells were also expanded, but only in patients with mild disease. Terminally differentiated CD8+ GZMB+ effector cells were clonally expanded both during the infection and post-infection, while CD8+ GZMK+ lymphocytes were more expanded post-infection and represented bona fide memory precursor effector cells. TCR repertoire analysis revealed that only highly proliferating T cell clonotypes, which included SARS-CoV-2-specific cells, were maintained post-infection and shared between the CD8+ GZMB+ and GZMK+ subsets. Overall, this study describes the development of immunity against SARS-CoV-2 and identifies an effector CD8+ T cell population with memory precursor-like features.


Assuntos
COVID-19/genética , COVID-19/imunologia , Interações Hospedeiro-Patógeno/imunologia , Imunofenotipagem , SARS-CoV-2/imunologia , Transcriptoma , Adulto , Idoso , Anticorpos Antivirais/imunologia , Linfócitos B/imunologia , Linfócitos B/metabolismo , Biomarcadores , COVID-19/virologia , Plasticidade Celular/genética , Plasticidade Celular/imunologia , Evolução Clonal/imunologia , Feminino , Perfilação da Expressão Gênica , Humanos , Isotipos de Imunoglobulinas/imunologia , Memória Imunológica , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/metabolismo , Contagem de Linfócitos , Masculino , Pessoa de Meia-Idade , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo
17.
Sci Signal ; 14(676)2021 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-33785611

RESUMO

Innate immune responses to Gram-negative bacteria depend on the recognition of lipopolysaccharide (LPS) by a receptor complex that includes CD14 and TLR4. In dendritic cells (DCs), CD14 enhances the activation not only of TLR4 but also that of the NFAT family of transcription factors, which suppresses cell survival and promotes the production of inflammatory mediators. NFAT activation requires Ca2+ mobilization. In DCs, Ca2+ mobilization in response to LPS depends on phospholipase C γ2 (PLCγ2), which produces inositol 1,4,5-trisphosphate (IP3). Here, we showed that the IP3 receptor 3 (IP3R3) and ITPKB, a kinase that converts IP3 to inositol 1,3,4,5-tetrakisphosphate (IP4), were both necessary for Ca2+ mobilization and NFAT activation in mouse and human DCs. A pool of IP3R3 was located on the plasma membrane of DCs, where it colocalized with CD14 and ITPKB. Upon LPS binding to CD14, ITPKB was required for Ca2+ mobilization through plasma membrane-localized IP3R3 and for NFAT nuclear translocation. Pharmacological inhibition of ITPKB in mice reduced both LPS-induced tissue swelling and the severity of inflammatory arthritis to a similar extent as that induced by the inhibition of NFAT using nanoparticles that delivered an NFAT-inhibiting peptide specifically to phagocytic cells. Our results suggest that ITPKB may represent a promising target for anti-inflammatory therapies that aim to inhibit specific DC functions.


Assuntos
Cálcio/metabolismo , Células Dendríticas , Fosfotransferases (Aceptor do Grupo Álcool) , Animais , Lipopolissacarídeos , Camundongos , Fosfotransferases (Aceptor do Grupo Álcool)/genética
18.
Science ; 369(6504): 706-712, 2020 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-32527925

RESUMO

Viral infections of the lower respiratory tract are a leading cause of mortality. Mounting evidence indicates that most severe cases are characterized by aberrant immune responses and do not depend on viral burden. In this study, we assessed how type III interferons (IFN-λ) contribute to the pathogenesis induced by RNA viruses. We report that IFN-λ is present in the lower, but not upper, airways of patients with coronavirus disease 2019 (COVID-19). In mice, we demonstrate that IFN-λ produced by lung dendritic cells in response to a synthetic viral RNA induces barrier damage, causing susceptibility to lethal bacterial superinfections. These findings provide a strong rationale for rethinking the pathophysiological role of IFN-λ and its possible use in clinical practice against endemic viruses, such as influenza virus as well as the emerging severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection.


Assuntos
Betacoronavirus , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/metabolismo , Células Dendríticas/metabolismo , Interferons/fisiologia , Pulmão/metabolismo , Pulmão/patologia , Pneumonia Viral/imunologia , Pneumonia Viral/metabolismo , Animais , Líquido da Lavagem Broncoalveolar/imunologia , COVID-19 , Proliferação de Células , Citocinas/metabolismo , Humanos , Interferon Tipo I/metabolismo , Interferons/metabolismo , Pulmão/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Nasofaringe/imunologia , Pandemias , Poli I-C/administração & dosagem , Mucosa Respiratória/patologia , SARS-CoV-2 , Transdução de Sinais , Infecções Estafilocócicas/metabolismo , Superinfecção , Receptor 3 Toll-Like/metabolismo , Interferon lambda
19.
Front Immunol ; 11: 529, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32318062

RESUMO

The chemokine receptor CCR4 has emerged as a skin-homing molecule important for the migration of T cells from the blood to the dermis. From our previous data on psoriasis patients, CCR4+ memory T cells emerged as a putative recirculating population between skin and blood. Here we focused our attention on the expression of CCR4 and skin-tropic molecules in the different stages of memory T cell differentiation. We analyzed the chemokine receptor profile in CD8+ and CD4+ CD45RA-CCR7+ (TCM) and CD45RA-CCR7- (TEM) cells. Subpopulations were further divided on the basis of CD62L expression, and the distribution among the subsets of the skin-homing molecule CLA (Cutaneous Lymphocyte Antigen) was evaluated. The characterization was performed on peripheral blood mononuclear cells isolated from 21 healthy subjects and 24 psoriasis patients. The results indicate that (i) the skin-homing CCR4 marker is mainly expressed in TCM cells, (ii) CCR4+ TCM cells also express high level of CLA and that (iii) the more differentiated phenotype TEM expresses CXCR3 and CCR5 but lower level of CCR4 and CLA. This indicates that progressive stages of memory T cell differentiation have profoundly different chemokine receptor patterns, with CD8+ TCM displaying a marked skin-tropic phenotype CLA+CCR4+. Differential skin-tropic phenotype between TCM and TEM cells was observed in both healthy subjects and psoriasis patients. However, patients showed an expanded circulating population of CD8+ TCM cells with phenotype CCR4+CXCR3+ that could play a role in the pathophysiology of psoriasis and possibly in disease recurrence.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Psoríase/imunologia , Receptores CCR4/metabolismo , Receptores de Retorno de Linfócitos/metabolismo , Pele/imunologia , Adulto , Diferenciação Celular , Feminino , Humanos , Memória Imunológica , Imunofenotipagem , Masculino , Pessoa de Meia-Idade , Oligossacarídeos , Especificidade de Órgãos , Antígeno Sialil Lewis X/análogos & derivados
20.
Eur J Clin Pharmacol ; 76(3): 409-418, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31982922

RESUMO

PURPOSE: The partial ineffectiveness and side effects of inflammatory bowel disease (IBD) current therapies drive basic research to look for new therapeutic target in order to develop new drug lead. Considering the pivotal role played by toll-like receptors (TLRs) in gut inflammation, we evaluate here the therapeutic effect of the synthetic glycolipid TLR4 antagonist FP7. METHODS: The anti-inflammatory effect of FP7, active as TLR4 antagonist, was evaluated on peripheral blood mononuclear cells (PBMCs) and lamina propria mononuclear cells (LPMCs) isolated from IBD patients, and in a mouse model of ulcerative colitis. RESULTS: FP7 strongly reduced the inflammatory responses induced by lipopolysaccharide (LPS) in vitro, due to its capacity to compete with LPS for the binding of TLR4/MD-2 receptor complex thus inhibiting both the MyD88- and TRIF-dependent inflammatory pathways. Colitic mice treated with FP7 exhibit reduced colonic inflammation and decreased levels of pro-inflammatory cytokines. CONCLUSIONS: This study suggests that TLR4 chemical modulation can be an effective therapeutic approach to IBD. The selectivity of FP7 on TLR4 makes this molecule a promising drug lead for new small molecules-based treatments.


Assuntos
Colite Ulcerativa/tratamento farmacológico , Glicolipídeos/uso terapêutico , Receptor 4 Toll-Like/metabolismo , Adulto , Animais , Células Cultivadas , Colite Ulcerativa/metabolismo , Colo/efeitos dos fármacos , Colo/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças , Feminino , Humanos , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Doenças Inflamatórias Intestinais/tratamento farmacológico , Doenças Inflamatórias Intestinais/metabolismo , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/metabolismo , Masculino , Camundongos , Pessoa de Meia-Idade , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...