Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Nat Commun ; 13(1): 3423, 2022 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-35701415

RESUMO

Detection and segmentation of abnormalities on medical images is highly important for patient management including diagnosis, radiotherapy, response evaluation, as well as for quantitative image research. We present a fully automated pipeline for the detection and volumetric segmentation of non-small cell lung cancer (NSCLC) developed and validated on 1328 thoracic CT scans from 8 institutions. Along with quantitative performance detailed by image slice thickness, tumor size, image interpretation difficulty, and tumor location, we report an in-silico prospective clinical trial, where we show that the proposed method is faster and more reproducible compared to the experts. Moreover, we demonstrate that on average, radiologists & radiation oncologists preferred automatic segmentations in 56% of the cases. Additionally, we evaluate the prognostic power of the automatic contours by applying RECIST criteria and measuring the tumor volumes. Segmentations by our method stratified patients into low and high survival groups with higher significance compared to those methods based on manual contours.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Algoritmos , Carcinoma Pulmonar de Células não Pequenas/diagnóstico por imagem , Humanos , Neoplasias Pulmonares/diagnóstico por imagem , Estudos Prospectivos , Tomografia Computadorizada por Raios X/métodos
3.
Cancers (Basel) ; 13(10)2021 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-34070016

RESUMO

This retrospective study investigated the value of pretreatment contrast-enhanced Magnetic Resonance Imaging (MRI)-based radiomics for the prediction of pathologic complete tumor response to neoadjuvant systemic therapy in breast cancer patients. A total of 292 breast cancer patients, with 320 tumors, who were treated with neo-adjuvant systemic therapy and underwent a pretreatment MRI exam were enrolled. As the data were collected in two different hospitals with five different MRI scanners and varying acquisition protocols, three different strategies to split training and validation datasets were used. Radiomics, clinical, and combined models were developed using random forest classifiers in each strategy. The analysis of radiomics features had no added value in predicting pathologic complete tumor response to neoadjuvant systemic therapy in breast cancer patients compared with the clinical models, nor did the combined models perform significantly better than the clinical models. Further, the radiomics features selected for the models and their performance differed with and within the different strategies. Due to previous and current work, we tentatively attribute the lack of improvement in clinical models following the addition of radiomics to the effects of variations in acquisition and reconstruction parameters. The lack of reproducibility data (i.e., test-retest or similar) meant that this effect could not be analyzed. These results indicate the need for reproducibility studies to preselect reproducible features in order to properly assess the potential of radiomics.

4.
Cancers (Basel) ; 13(8)2021 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-33924382

RESUMO

While handcrafted radiomic features (HRFs) have shown promise in the field of personalized medicine, many hurdles hinder its incorporation into clinical practice, including but not limited to their sensitivity to differences in acquisition and reconstruction parameters. In this study, we evaluated the effects of differences in in-plane spatial resolution (IPR) on HRFs, using a phantom dataset (n = 14) acquired on two scanner models. Furthermore, we assessed the effects of interpolation methods (IMs), the choice of a new unified in-plane resolution (NUIR), and ComBat harmonization on the reproducibility of HRFs. The reproducibility of HRFs was significantly affected by variations in IPR, with pairwise concordant HRFs, as measured by the concordance correlation coefficient (CCC), ranging from 42% to 95%. The number of concordant HRFs (CCC > 0.9) after resampling varied depending on (i) the scanner model, (ii) the IM, and (iii) the NUIR. The number of concordant HRFs after ComBat harmonization depended on the variations between the batches harmonized. The majority of IMs resulted in a higher number of concordant HRFs compared to ComBat harmonization, and the combination of IMs and ComBat harmonization did not yield a significant benefit. Our developed framework can be used to assess the reproducibility and harmonizability of RFs.

5.
Cancers (Basel) ; 13(4)2021 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-33673071

RESUMO

Radiomics features may contribute to increased diagnostic performance of MRI in the prediction of axillary lymph node metastasis. The objective of the study was to predict preoperative axillary lymph node metastasis in breast cancer using clinical models and radiomics models based on T2-weighted (T2W) dedicated axillary MRI features with node-by-node analysis. From August 2012 until October 2014, all women who had undergone dedicated axillary 3.0T T2W MRI, followed by axillary surgery, were retrospectively identified, and available clinical data were collected. All axillary lymph nodes were manually delineated on the T2W MR images, and quantitative radiomics features were extracted from the delineated regions. Data were partitioned patient-wise to train 100 models using different splits for the training and validation cohorts to account for multiple lymph nodes per patient and class imbalance. Features were selected in the training cohorts using recursive feature elimination with repeated 5-fold cross-validation, followed by the development of random forest models. The performance of the models was assessed using the area under the curve (AUC). A total of 75 women (median age, 61 years; interquartile range, 51-68 years) with 511 axillary lymph nodes were included. On final pathology, 36 (7%) of the lymph nodes had metastasis. A total of 105 original radiomics features were extracted from the T2W MR images. Each cohort split resulted in a different number of lymph nodes in the training cohorts and a different set of selected features. Performance of the 100 clinical and radiomics models showed a wide range of AUC values between 0.41-0.74 and 0.48-0.89 in the training cohorts, respectively, and between 0.30-0.98 and 0.37-0.99 in the validation cohorts, respectively. With these results, it was not possible to obtain a final prediction model. Clinical characteristics and dedicated axillary MRI-based radiomics with node-by-node analysis did not contribute to the prediction of axillary lymph node metastasis in breast cancer based on data where variations in acquisition and reconstruction parameters were not addressed.

6.
Br J Radiol ; 93(1108): 20190948, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32101448

RESUMO

Historically, medical imaging has been a qualitative or semi-quantitative modality. It is difficult to quantify what can be seen in an image, and to turn it into valuable predictive outcomes. As a result of advances in both computational hardware and machine learning algorithms, computers are making great strides in obtaining quantitative information from imaging and correlating it with outcomes. Radiomics, in its two forms "handcrafted and deep," is an emerging field that translates medical images into quantitative data to yield biological information and enable radiologic phenotypic profiling for diagnosis, theragnosis, decision support, and monitoring. Handcrafted radiomics is a multistage process in which features based on shape, pixel intensities, and texture are extracted from radiographs. Within this review, we describe the steps: starting with quantitative imaging data, how it can be extracted, how to correlate it with clinical and biological outcomes, resulting in models that can be used to make predictions, such as survival, or for detection and classification used in diagnostics. The application of deep learning, the second arm of radiomics, and its place in the radiomics workflow is discussed, along with its advantages and disadvantages. To better illustrate the technologies being used, we provide real-world clinical applications of radiomics in oncology, showcasing research on the applications of radiomics, as well as covering its limitations and its future direction.


Assuntos
Aprendizado Profundo/tendências , Diagnóstico por Imagem/tendências , Processamento de Imagem Assistida por Computador/tendências , Tecnologia Radiológica/tendências , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias da Mama/diagnóstico por imagem , Diagnóstico por Imagem/métodos , Feminino , Previsões , Humanos , Processamento de Imagem Assistida por Computador/métodos , Neoplasias Pulmonares/diagnóstico por imagem , Masculino , Radiografia/métodos , Tecnologia Radiológica/métodos , Fluxo de Trabalho
7.
Breast ; 46: 81-86, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31103811

RESUMO

OBJECTIVE: The main objective of this double-blind randomized controlled trial (RCT) was to assess seroma formation and its sequelae in patients undergoing mastectomy. Patients were randomized into one of three groups in which different wound closure techniques were applied: 1) conventional wound closure without flap fixation (CON) 2) flap fixation using sutures (FF-S) and 3) flap fixation using an adhesive tissue glue (FF-G). BACKGROUND: Seroma formation is still a bothersome complication after mastectomy. Flap fixation seems promising in reducing seroma formation. Various flap fixation techniques remain to be analyzed, including long-term outcome measures. METHODS: This trial was conducted in three different hospitals between June 2014 and November 2016. Patients were allocated to one of three groups. The primary outcome was the number of seroma needle aspirations. Secondary outcomes were (surgical site) infections, number of outpatient clinic visits, shoulder function, postoperative pain, patient-reported cosmesis and skin dimpling. RESULTS: A total of 187 patients were randomly assigned to CON (n = 61), FF-S (n = 64) and FF-G (n = 62). The number of seroma aspirations was significantly higher in CON when compared to both flap fixation groups (p = 0.032), with no difference between FF-S and FF-G. Secondary outcomes showed no statistical differences between all groups. The higher number of outpatient clinic visits in CON was considered to be of clinical importance (CON = 27 (44.3%), FF-S = 19 (30.6%) and FF-G = 21 (34.4%)). CONCLUSIONS: Mastectomy followed by flap fixation with either sutures or adhesive tissue glue reduces the number of seroma aspirations when compared to simple wound closure.


Assuntos
Neoplasias da Mama/cirurgia , Mastectomia/efeitos adversos , Complicações Pós-Operatórias/prevenção & controle , Seroma/prevenção & controle , Retalhos Cirúrgicos , Adesivos , Adulto , Método Duplo-Cego , Drenagem/estatística & dados numéricos , Feminino , Humanos , Mastectomia/métodos , Pessoa de Meia-Idade , Complicações Pós-Operatórias/epidemiologia , Complicações Pós-Operatórias/terapia , Espaço Morto Respiratório , Seroma/epidemiologia , Seroma/terapia , Técnicas de Sutura , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...