Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLOS Glob Public Health ; 2(5): e0000412, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36962207

RESUMO

In light of the continuing emergence of new SARS-CoV-2 variants and vaccines, we create a robust simulation framework for exploring possible infection trajectories under various scenarios. The situations of primary interest involve the interaction between three components: vaccination campaigns, non-pharmaceutical interventions (NPIs), and the emergence of new SARS-CoV-2 variants. Additionally, immunity waning and vaccine boosters are modeled to account for their growing importance. New infections are generated according to a hierarchical model in which people have a random, individual infectiousness. The model thus includes super-spreading observed in the COVID-19 pandemic which is important for accurate uncertainty prediction. Our simulation functions as a dynamic compartment model in which an individual's history of infection, vaccination, and possible reinfection all play a role in their resistance to further infections. We present a risk measure for each SARS-CoV-2 variant, [Formula: see text], that accounts for the amount of resistance within a population and show how this risk changes as the vaccination rate increases. [Formula: see text] highlights that different variants may become dominant in different countries-and in different times-depending on the population compositions in terms of previous infections and vaccinations. We compare the efficacy of control strategies which act to both suppress COVID-19 outbreaks and relax restrictions when possible. We demonstrate that a controller that responds to the effective reproduction number in addition to case numbers is more efficient and effective in controlling new waves than monitoring case numbers alone. This not only reduces the median total infections and peak quarantine cases, but also controls outbreaks much more reliably: such a controller entirely prevents rare but large outbreaks. This is important as the majority of public discussions about efficient control of the epidemic have so far focused primarily on thresholds for case numbers.

2.
Infect Dis Model ; 6: 706-728, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33824936

RESUMO

A primary quantity of interest in the study of infectious diseases is the average number of new infections that an infected person produces. This so-called reproduction number has significant implications for the disease progression. There has been increasing literature suggesting that superspreading, the significant variability in number of new infections caused by individuals, plays an important role in the spread of SARS-CoV-2. In this paper, we consider the effect that such superspreading has on the estimation of the reproduction number and subsequent estimates of future cases. Accordingly, we employ a simple extension to models currently used in the literature to estimate the reproduction number and present a case-study of the progression of COVID-19 in Austria. Our models demonstrate that the estimation uncertainty of the reproduction number increases with superspreading and that this improves the performance of prediction intervals. Of independent interest is the derivation of a transparent formula that connects the extent of superspreading to the width of credible intervals for the reproduction number. This serves as a valuable heuristic for understanding the uncertainty surrounding diseases with superspreading.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...