Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochim Biophys Acta Proteins Proteom ; 1869(6): 140623, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33607274

RESUMO

Ovarian cancer (OvCA) is the most lethal neoplasia among gynecologic malignancies and faces high rates of new cases particularly in South America. In special, the High Grade Serous Ovarian Carcinoma (HGSC) presents very poor prognosis with deaths caused mainly by metastasis. Among several mechanisms involved in metastasis, the Epithelial to Mesenchymal Transition (EMT) molecular reprogramming represents a model for latest stages of cancer progression. EMT promotes important cellular changes in cellular adhesion and cell-cell communication, which particularly depends on the paracrine signaling from neighbor cells. Considering the importance of cellular communication during EMT and metastasis, here we analyzed the changes in the secretome of the ovarian cancer cell line Caov-3 induced to EMT by Epidermal Growth Factor (EGF). Using a combination of GEL-LC-MS/MS and stable isotopic metabolic labelling (SILAC), we identified up-regulated candidates during EMT as a starting point to identify relevant proteins for HGSC. Based on public databases, our candidate proteins were validated and prioritized for further analysis. Importantly, several of the protein candidates were associated with cellular vesicles, which are important to the cell-cell communication and metastasis. Furthermore, the association of candidate proteins with gene expression data uncovered a subset of proteins correlated with the mesenchymal subtype of ovarian cancer. Based on this relevant molecular signature for aggressive ovarian cancer, supported by protein and gene expression data, we developed a targeted proteomic method to evaluate individual OvCA clinical samples. The quantitative information obtained for 33 peptides, representative of 18 proteins, was able to segregate HGSC from other tumor types. Our study highlighted the richness of the secretome and EMT to reveal relevant proteins for HGSC, which could be used in further studies and larger patient cohorts as a potential stratification signature for ovarian cancer tumor that could guide clinical conduct for patient treatment.


Assuntos
Biomarcadores Tumorais/metabolismo , Cistadenocarcinoma Seroso/patologia , Fator de Crescimento Epidérmico/farmacologia , Neoplasias Ovarianas/patologia , Proteômica/métodos , Regulação para Cima , Comunicação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Cromatografia Líquida , Cistadenocarcinoma Seroso/metabolismo , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Marcação por Isótopo , Invasividade Neoplásica , Estadiamento de Neoplasias , Neoplasias Ovarianas/metabolismo , Mapas de Interação de Proteínas/efeitos dos fármacos , Espectrometria de Massas em Tandem
2.
Methods Mol Biol ; 1550: 35-46, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28188521

RESUMO

Proteins are very dynamic within the cell and their localization and trafficking between subcellular compartments are critical for their correct function. Indeed, the abnormal localization of a protein might lead to the pathogenesis of several diseases. The association of cell fractionation methods and mass spectrometry based proteomic methods allow both the localization and quantification of proteins in different sub-compartments. Here we present a detailed protocol for enrichment, identification, and quantitation of the nuclear proteome in cell lines combining nuclear subproteome enrichment by differential centrifugation and high-throughput proteomics.


Assuntos
Proteínas Nucleares/química , Proteínas Nucleares/isolamento & purificação , Proteoma , Proteômica/métodos , Fracionamento Celular/métodos , Linhagem Celular , Núcleo Celular/metabolismo , Biologia Computacional/métodos , Bases de Dados de Proteínas , Ensaios de Triagem em Larga Escala , Humanos , Espectrometria de Massas/métodos , Transporte Proteico
3.
Methods Mol Biol ; 1156: 323-35, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24791999

RESUMO

The secretome is a sub-proteome of great interest in several fields of biomedical sciences, especially as a source of diagnostics and therapeutic targets. Proteomics has been contributing significantly to elucidate the secretome of a great diversity of cells, tissues, and organisms, turning profiles of thousands of proteins a usual practice. After elucidation of long protein lists, targeted proteomics also plays important roles in accurate quantification and validation of such secreted proteins. Here we present detailed protocols to explore and quantify the secretome of cancer cells, even though this protocol can be employed to any kind of biological material.


Assuntos
Proteômica , Linhagem Celular Tumoral , Meios de Cultura , Ensaios de Triagem em Larga Escala , Humanos , Espectrometria de Massas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA