Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dev Biol ; 399(2): 337-47, 2015 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-25601451

RESUMO

Organizer activity, once thought to be restricted to vertebrates, has ancient origins. However, among non-bilaterians, it has only been subjected to detailed investigation during embryonic development of the sea anemone, Nematostella vectensis. As a step toward establishing the extent to which findings in Nematostella can be generalized across the large and diverse phylum Cnidaria, we examined the expression of some key organizer and gastrulation genes during the embryonic development of the coral Acropora millepora. Although anemones and corals both belong to the cnidarian class Anthozoa, the two lineages diverged during the Cambrian and the morphological development of Acropora differs in several important respects from that of Nematostella. While the expression patterns of the key genes brachyury, bmp2/4, chordin, goosecoid and forkhead are broadly similar, developmental differences between the two species enable novel observations, and new interpretations of their significance. Specifically, brachyury expression during the flattened prawnchip stage before gastrulation, a developmental peculiarity of Acropora, leads us to suggest that it is the key gene demarcating ectoderm from endoderm in Acropora, and by implication in other cnidarians, whereas previous studies in Nematostella proposed that forkhead plays this role. Other novel observations include the transient expression of Acropora forkhead in scattered ectodermal cells shortly after gastrulation, and in the developing mesenterial filaments, with no corresponding expression reported in Nematostella. In addition, the expression patterns of goosecoid and bmp2/4 confirm the fundamental bilaterality of the Anthozoa.


Assuntos
Antozoários/embriologia , Evolução Biológica , Proteínas Fetais/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Organizadores Embrionários/metabolismo , Proteínas com Domínio T/metabolismo , Animais , Antozoários/metabolismo , Proteína Morfogenética Óssea 2/metabolismo , Proteína Morfogenética Óssea 4/metabolismo , Primers do DNA/genética , DNA Complementar/genética , Ectoderma/embriologia , Ectoderma/metabolismo , Endoderma/embriologia , Endoderma/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/genética , Proteína Goosecoid/metabolismo , Processamento de Imagem Assistida por Computador , Hibridização In Situ , Especificidade da Espécie
2.
PLoS One ; 6(10): e26411, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22065994

RESUMO

BACKGROUND: A successful metamorphosis from a planktonic larva to a settled polyp, which under favorable conditions will establish a future colony, is critical for the survival of corals. However, in contrast to the situation in other animals, e.g., frogs and insects, little is known about the molecular basis of coral metamorphosis. We have begun to redress this situation with previous microarray studies, but there is still a great deal to learn. In the present paper we have utilized a different technology, subtractive hybridization, to characterize genes differentially expressed across this developmental transition and to compare the success of this method to microarray. METHODOLOGY/PRINCIPAL FINDINGS: Suppressive subtractive hybridization (SSH) was used to identify two pools of transcripts from the coral, Acropora millepora. One is enriched for transcripts expressed at higher levels at the pre-settlement stage, and the other for transcripts expressed at higher levels at the post-settlement stage. Virtual northern blots were used to demonstrate the efficacy of the subtractive hybridization technique. Both pools contain transcripts coding for proteins in various functional classes but transcriptional regulatory proteins were represented more frequently in the post-settlement pool. Approximately 18% of the transcripts showed no significant similarity to any other sequence on the public databases. Transcripts of particular interest were further characterized by in situ hybridization, which showed that many are regulated spatially as well as temporally. Notably, many transcripts exhibit axially restricted expression patterns that correlate with the pool from which they were isolated. Several transcripts are expressed in patterns consistent with a role in calcification. CONCLUSIONS: We have characterized over 200 transcripts that are differentially expressed between the planula larva and post-settlement polyp of the coral, Acropora millepora. Sequence, putative function, and in some cases temporal and spatial expression are reported.


Assuntos
Antozoários/crescimento & desenvolvimento , Antozoários/genética , Perfilação da Expressão Gênica , Metamorfose Biológica/genética , Animais , Northern Blotting , Regulação da Expressão Gênica no Desenvolvimento , Hibridização In Situ , Estágios do Ciclo de Vida/genética , Anotação de Sequência Molecular , Dados de Sequência Molecular , Hibridização de Ácido Nucleico , Análise de Sequência com Séries de Oligonucleotídeos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fatores de Tempo
3.
BMC Genomics ; 9: 540, 2008 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-19014561

RESUMO

BACKGROUND: Anthozoan cnidarians are amongst the simplest animals at the tissue level of organization, but are surprisingly complex and vertebrate-like in terms of gene repertoire. As major components of tropical reef ecosystems, the stony corals are anthozoans of particular ecological significance. To better understand the molecular bases of both cnidarian development in general and coral-specific processes such as skeletogenesis and symbiont acquisition, microarray analysis was carried out through the period of early development - when skeletogenesis is initiated, and symbionts are first acquired. RESULTS: Of 5081 unique peptide coding genes, 1084 were differentially expressed (P

Assuntos
Antozoários/genética , Perfilação da Expressão Gênica , Análise de Sequência com Séries de Oligonucleotídeos , Sequência de Aminoácidos , Animais , Antozoários/crescimento & desenvolvimento , Calcificação Fisiológica/genética , Análise por Conglomerados , DNA Complementar/genética , Etiquetas de Sequências Expressas , Metamorfose Biológica/genética , Dados de Sequência Molecular , Simbiose/genética
4.
Trends Genet ; 21(12): 633-9, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16226338

RESUMO

Cnidarians are among the simplest extant animals; however EST analyses reveal that they have a remarkably high level of genetic complexity. In this article, we show that the full diversity of metazoan signaling pathways is represented in this phylum, as are antagonists previously known only in chordates. Many of the cnidarian ESTs match genes previously known only in non-animal kingdoms. At least some of these represent ancient genes lost by all bilaterians examined so far, rather than genes gained by recent lateral gene transfer.


Assuntos
Antozoários/genética , Genética Populacional , Animais , Proteínas de Bactérias/genética , Genes Duplicados , Proteínas de Choque Térmico/genética , Humanos , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...