Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Cell Death Dis ; 14(12): 849, 2023 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-38123597

RESUMO

p140Cap is an adaptor protein involved in assembling multi-protein complexes regulating several cellular processes. p140Cap acts as a tumor suppressor in breast cancer (BC) and neuroblastoma patients, where its expression correlates with a better prognosis. The role of p140Cap in tumor metabolism remains largely unknown. Here we study the role of p140Cap in the modulation of the mevalonate (MVA) pathway in BC cells. The MVA pathway is responsible for the biosynthesis of cholesterol and non-sterol isoprenoids and is often deregulated in cancer. We found that both in vitro and in vivo, p140Cap cells and tumors show an increased flux through the MVA pathway by positively regulating the pace-maker enzyme of the MVA pathway, the 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase (HMGCR), via transcriptional and post-translational mechanisms. The higher cholesterol synthesis is paralleled with enhanced cholesterol efflux. Moreover, p140Cap promotes increased cholesterol localization in the plasma membrane and reduces lipid rafts-associated Rac1 signalling, impairing cell membrane fluidity and cell migration in a cholesterol-dependent manner. Finally, p140Cap BC cells exhibit decreased cell viability upon treatments with statins, alone or in combination with chemotherapeutic at low concentrations in a synergistic manner. Overall, our data highlight a new perspective point on tumor suppression in BC by establishing a previously uncharacterized role of the MVA pathway in p140Cap expressing tumors, thus paving the way to the use of p140Cap as a potent biomarker to stratify patients for better tuning therapeutic options.


Assuntos
Neoplasias da Mama , Inibidores de Hidroximetilglutaril-CoA Redutases , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Ácido Mevalônico/metabolismo , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Colesterol/metabolismo , Movimento Celular
2.
Ann Gen Psychiatry ; 21(1): 29, 2022 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-35907967

RESUMO

BACKGROUND: Despite concerns on mental health problems related to lockdowns, recent reports revealed a reduction in psychiatric admissions in Emergency Departments (ED) during the lockdown period compared with the previous year in several countries. Most of the existing studies focused on the first lockdown not considering the different phases of the COVID-19 crisis. The present study aimed to analyze differences in ED admission for psychiatric consultation during three different phases of the COVID-19 health crisis in Italy. METHODS: Information on ED admission for psychiatric consultations were retrospectively collected at the ED of the Santo Spirito Hospital in Rome (Italy), and compared between the three periods: the lockdown (March-June 2020) and the post-lockdown period (June 2020-June 2021) compared to the pre-lockdown (January 2019-March 2020). Multinomial logistic regression was used to assess the risk of accessing ED for psychiatric consultation before, during, after the lockdown. RESULTS: Three thousand and eight hundred seventy-one ED psychiatric consultations were collected. A significant reduction of psychiatric consultations in ED during the lockdown period and the post-lockdown (H 762,45; p < 0.001) was documented. Multinomial logistic regression analysis showed that compared to pre-lockdown during the lockdown and post-lockdown patients were more likely to be men (RRR 1.52; 95% CI 1.10-2.12) and more often diagnosed with non-severe mental illnesses (nSMI) (relative risk ratio [RRR] 1.53, 95% CI 1.10-2.15; and 1.72, 95% CI 1.42-2.08); during the lockdown, patients were also more often diagnosed with alcohol/substance abuse (A&S) (RRR 1.70; 95% CI 1.10-2.65). CONCLUSIONS: several changes in the clinical characteristics of psychiatric consultations during and after the lockdown emerged from the present study; nSMI and A&S abuse patients were more likely to present at the ED in the lockdown and post-lockdown periods while SMI patients appeared to be less likely. These may inform clinicians and future preventive strategies among community mental health services.

3.
Sci Rep ; 11(1): 14922, 2021 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-34290274

RESUMO

The GNA15 gene is ectopically expressed in human pancreatic ductal adenocarcinoma cancer cells. The encoded Gα15 protein can promiscuously redirect GPCR signaling toward pathways with oncogenic potential. We sought to describe the distribution of GNA15 in adenocarcinoma from human pancreatic specimens and to analyze the mechanism driving abnormal expression and the consequences on signaling and clinical follow-up. We detected GNA15 expression in pre-neoplastic pancreatic lesions and throughout progression. The analysis of biological data sets, primary and xenografted human tumor samples, and clinical follow-up shows that elevated expression is associated with poor prognosis for GNA15, but not any other GNA gene. Demethylation of the 5' GNA15 promoter region was associated with ectopic expression of Gα15 in pancreatic neoplastic cells, but not in adjacent dysplastic or non-transformed tissue. Down-modulation of Gα15 by shRNA or CRISPR/Cas9 affected oncogenic signaling, and reduced adenocarcimoma cell motility and invasiveness. We conclude that de novo expression of wild-type GNA15 characterizes transformed pancreatic cells. The methylation pattern of GNA15 changes in preneoplastic lesions coincident with the release a transcriptional blockade that allows ectopic expression to persist throughout PDAC progression. Elevated GNA15 mRNA correlates with poor prognosis. In addition, ectopic Gα15 signaling provides an unprecedented mechanism in the early steps of pancreas carcinogenesis distinct from classical G protein oncogenic mutations described previously in GNAS and GNAQ/GNA11.


Assuntos
Carcinoma Ductal Pancreático/genética , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/genética , Regulação Neoplásica da Expressão Gênica/genética , Neoplasias Pancreáticas/genética , Sistemas CRISPR-Cas , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Proteínas de Ligação ao GTP/metabolismo , Expressão Gênica/genética , Humanos , Metilação , Invasividade Neoplásica/genética , Neoplasias Pancreáticas/patologia , Prognóstico , Regiões Promotoras Genéticas/genética , RNA Mensageiro , RNA Interferente Pequeno , Transdução de Sinais
4.
Cell Death Differ ; 27(2): 790-807, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31285546

RESUMO

Neuroblastoma is the most common extra-cranial pediatric solid tumor, responsible for 13-15% of pediatric cancer death. Its intrinsic heterogeneity makes it difficult to target for successful therapy. The adaptor protein p140Cap/SRCIN1 negatively regulates tumor cell features and limits breast cancer progression. This study wish to assess if p140Cap is a key biological determinant of neuroblastoma outcome. RNAseq profiles of a large cohort of neuroblastoma patients show that SRCIN1 mRNA levels are an independent risk factor inversely correlated to disease aggressiveness. In high-risk patients, CGH+SNP microarray analysis of primary neuroblastoma identifies SRCIN1 as frequently altered by hemizygous deletion, copy-neutral loss of heterozygosity, or disruption. Functional experiments show that p140Cap negatively regulates Src and STAT3 signaling, affects anchorage-independent growth and migration, in vivo tumor growth and spontaneous lung metastasis formation. p140Cap also increases sensitivity of neuroblastoma cells to doxorubicin and etoposide treatment, as well as to a combined treatment with chemotherapy drugs and Src inhibitors. Our functional findings point to a causal role of p140Cap in curbing the aggressiveness of neuroblastoma, due to its ability to impinge on specific molecular pathways, and to sensitize cells to therapeutic treatment. This study provides the first evidence that the SRCIN1/p140Cap adaptor protein is a key player in neuroblastoma as a new independent prognostic marker for patient outcome and treatment. Altogether, these data highlight the potential clinical impact of SRCIN1/p140Cap expression in neuroblastoma tumors, in terms of reducing cytotoxic effects of chemotherapy, one of the main issues for pediatric tumor treatment.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Biomarcadores Tumorais/metabolismo , Neoplasias Pulmonares/secundário , Neuroblastoma/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/genética , Animais , Biomarcadores Tumorais/genética , Proliferação de Células , Sobrevivência Celular , Humanos , Lactente , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Neuroblastoma/diagnóstico , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Células Tumorais Cultivadas
7.
Oncotarget ; 8(36): 60109-60122, 2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-28947957

RESUMO

ERBB2 receptor belongs to the ERBB tyrosine kinase receptor family. At variance to the other family members, ERBB2 is a constitutively active orphan receptor. Upon ligand binding and activation, ERBB receptors form homo- or hetero-dimers with the other family members, including ERBB2, promoting an intracellular signaling cascade. ERBB2 is the preferred dimerization partner and ERBB2 heterodimers signaling is stronger and longer acting compared to heterodimers between other ERBB members. The specific contribution of ERBB2 in heterodimer signaling is still undefined. Here we report the formation of circular dorsal ruffles (CDRs) upon treatment of the ERBB2-overexpressing breast cancer cell lines SK-BR-3 and ZR751 with Trastuzumab, a therapeutic humanized monoclonal antibody directed against ERBB2. We found that in SK-BR-3 cells Trastuzumab leads to surface redistribution of ERBB2 and ERBB1 in CDRs, and that the ERBB2-dependent ERK1/2 phosphorylation and ERBB1 expression are both required for CDR formation. In particular, in these cells CDR formation requires activation of both the protein regulator of actin polymerization N-WASP, mediated by ERK1/2, and of the actin depolymerizing protein cofilin, mediated by ERBB1. Furthermore, we suggest that this latter event may be inhibited by the negative cell motility regulator p140Cap, as we found that p140Cap overexpression led to cofilin deactivation and inhibition of CDR formation. In conclusion, here we show for the first time an ERBB2-specific signaling contribution to an ERBB2/ERBB1 heterodimer, in the activation of a complex biological process such as the formation of CDRs.

8.
Nat Commun ; 8: 14797, 2017 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-28300085

RESUMO

The docking protein p140Cap negatively regulates tumour cell features. Its relevance on breast cancer patient survival, as well as its ability to counteract relevant cancer signalling pathways, are not fully understood. Here we report that in patients with ERBB2-amplified breast cancer, a p140Cap-positive status associates with a significantly lower probability of developing a distant event, and a clear difference in survival. p140Cap dampens ERBB2-positive tumour cell progression, impairing tumour onset and growth in the NeuT mouse model, and counteracting epithelial mesenchymal transition, resulting in decreased metastasis formation. One major mechanism is the ability of p140Cap to interfere with ERBB2-dependent activation of Rac GTPase-controlled circuitries. Our findings point to a specific role of p140Cap in curbing the aggressiveness of ERBB2-amplified breast cancers and suggest that, due to its ability to impinge on specific molecular pathways, p140Cap may represent a predictive biomarker of response to targeted anti-ERBB2 therapies.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Neoplasias da Mama/metabolismo , Receptor ErbB-2/metabolismo , Proteínas rac de Ligação ao GTP/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/genética , Animais , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Progressão da Doença , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos Endogâmicos BALB C , Camundongos Transgênicos , Metástase Neoplásica , Neoplasias Experimentais/genética , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Receptor ErbB-2/genética , Proteínas rac de Ligação ao GTP/genética
9.
Oncotarget ; 7(45): 74189-74202, 2016 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-27713116

RESUMO

The expression of Prostate Specific-Membrane Antigen (PSMA) increases in high-grade prostate carcinoma envisaging a role in growth and progression. We show here that clustering PSMA at LNCaP or PC3-PSMA cell membrane activates AKT and MAPK pathways thus promoting proliferation and survival. PSMA activity was dependent on the assembly of a macromolecular complex including filamin A, beta1 integrin, p130CAS, c-Src and EGFR. Within this complex beta1 integrin became activated thereby inducing a c-Src-dependent EGFR phosphorylation at Y1086 and Y1173 EGF-independent residues. Silencing or blocking experiments with drugs demonstrated that all the complex components were required for full PSMA-dependent promotion of cell growth and/or survival in 3D culture, but that p130CAS and EGFR exerted a major role. All PSMA complex components were found assembled in multiple samples of two high-grade prostate carcinomas and associated with EGFR phosphorylation at Y1086. The expression of p130CAS and pEGFRY1086 was thus analysed by tissue micro array in 16 castration-resistant prostate carcinomas selected from 309 carcinomas and stratified from GS 3+4 to GS 5+5. Patients with Gleason Score ≤5 resulted negative whereas those with GS≥5 expressed p130CAS and pEGFRY1086 in 75% and 60% of the cases, respectively.Collectively, our results demonstrate for the first time that PSMA recruits a functionally active complex which is present in high-grade patients. In addition, two components of this complex, p130CAS and the novel pEGFRY1086, correlate with progression in castration-resistant patients and could be therefore useful in therapeutic or surveillance strategies of these patients.


Assuntos
Calicreínas/metabolismo , Antígeno Prostático Específico/metabolismo , Neoplasias de Próstata Resistentes à Castração/metabolismo , Neoplasias da Próstata/metabolismo , Processos de Crescimento Celular/fisiologia , Linhagem Celular Tumoral , Sobrevivência Celular/fisiologia , Progressão da Doença , Receptores ErbB/metabolismo , Humanos , Sistema de Sinalização das MAP Quinases , Masculino , Proteína Oncogênica v-akt/metabolismo , Fosforilação , Neoplasias da Próstata/patologia , Neoplasias de Próstata Resistentes à Castração/patologia , Serina-Treonina Quinases TOR/metabolismo , Proteína de Morte Celular Associada a bcl/metabolismo
10.
Am J Cancer Res ; 3(3): 290-301, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23841028

RESUMO

p140Cap is an adaptor protein that negatively controls tumor cell properties, by inhibiting in vivo tumor growth and metastasis formation. Our previous data demonstrated that p140Cap interferes with tumor growth and impairs invasive properties of cancer cells inactivating signaling pathways, such as the tyrosine kinase Src or E-cadherin/EGFR cross-talk. In breast cancer p140Cap expression inversely correlates with tumor malignancy. p140Cap is composed of several conserved domains that mediate association with specific partners. Here we focus our attention on two domains of p140Cap, the TER (Tyrosine Enriched Region) which includes several tyrosine residues, and the CT (Carboxy Terminal) which contains a proline rich sequence, involved in binding to SH2 and SH3 domains, respectively. By generating stable cell lines expressing these two proteins, we demonstrate that both TER and CT domains maintain the ability to associate the C-terminal Src kinase (Csk) and Src, to inhibit Src activation and Focal adhesion kinase (Fak) phosphorylation, and to impair in vitro and in vivo tumor cell features. In particular expression of TER and CT proteins in cancer cells inhibits in vitro and in vivo growth and directional migration at a similar extent of the full length p140Cap protein. Moreover, by selective point mutations and deletion we show that the ability of the modules to act as negative regulators of cell migration and proliferation mainly resides on the two tyrosines (Y) inserted in the EPLYA and EGLYA sequences in the TER module and in the second proline-rich stretch contained in the CT protein. Gene signature of cells expressing p140Cap, TER or CT lead to the identification of a common pattern of 105 down-regulated and 128 up-regulated genes, suggesting that the three proteins can act through shared pathways. Overall, this work highlights that the TER and CT regions of p140Cap can efficiently suppress tumor cell properties, opening the perspective that short, defined p140Cap regions can have therapeutic effects.

11.
PLoS One ; 8(1): e54931, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23383002

RESUMO

Protein phosphorylation tightly regulates specific binding of effector proteins that control many diverse biological functions of cells (e. g. signaling, migration and proliferation). p140Cap is an adaptor protein, specifically expressed in brain, testis and epithelial cells, that undergoes phosphorylation and tunes its interactions with other regulatory molecules via post-translation modification. In this work, using mass spectrometry, we found that p140Cap is in vivo phosphorylated on tyrosine (Y) within the peptide GEGLpYADPYGLLHEGR (from now on referred to as EGLYA) as well as on three serine residues. Consistently, EGLYA has the highest score of in silico prediction of p140Cap phosphorylation. To further investigate the p140Cap function, we performed site specific mutagenesis on tyrosines inserted in EGLYA and EPLYA, a second sequence with the same highest score of phosphorylation. The mutant protein, in which both EPLYA/EGLYA tyrosines were converted to phenylalanine, was no longer tyrosine phosphorylated, despite the presence of other tyrosine residues in p140Cap sequence. Moreover, this mutant lost its ability to bind the C-terminal Src kinase (Csk), previously shown to interact with p140Cap by Far Western analysis. In addition, we found that in vitro and in HEK-293 cells, the Abelson kinase is the major kinase involved in p140Cap tyrosine phosphorylation on the EPLYA and EGLYA sequences. Overall, these data represent an original attempt to in vivo characterise phosphorylated residues of p140Cap. Elucidating the function of p140Cap will provide novel insights into its biological activity not only in normal cells, but also in tumors.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/química , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Proteínas Proto-Oncogênicas c-abl/metabolismo , Tirosina/metabolismo , Quinases da Família src/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/genética , Motivos de Aminoácidos , Sequência de Aminoácidos , Sítios de Ligação , Proteína Tirosina Quinase CSK , Células HEK293 , Humanos , Células MCF-7 , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Fosforilação , Ligação Proteica , Domínios de Homologia de src , Quinases da Família src/química
12.
Clin Oral Implants Res ; 24(6): 612-7, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22332879

RESUMO

AIM: To evaluate fundamental cell functions, such as adhesion, IL-6 production and proliferation of human gingival keratinocytes cultured on a newly engineered collagen matrix (CM-10826) and to assess the degree of specific biocompatibility of this new device. MATERIALS AND METHODS: Primary cultures of human keratinocytes were derived "in vitro" from biopsies of independent donors. Their true epithelial origin was ensured by the expression of cytokeratin 14. Adhesion, proliferation and production of IL-6 cytokine was then measured in the presence or absence of CM-10826 activity or of its relevant components. RESULTS: Functional tests revealed that keratinocytes adhered to CM-10826 and up-regulated their basal IL-6 production. The type of keratinocytes used expressed cytokeratin 14. Proliferation experiments demonstrated that the best cellular response was observed in the presence of Collagen I, the main component of CM-10826. No undesired effects were observed as for keratinocyte viability, morphology or differentiation. CONCLUSIONS: Our results demonstrate that CM-10826 has a favourable biological effect on the "in vitro" response of gingival keratinocytes in terms of IL-6 production, cell growth and adhesion. These findings may encourage a possible use of this collagen membrane as a tissue which, alone, may substitute for autologous gingival grafts thereby overcoming the limitations of autologous tissue.


Assuntos
Colágeno/farmacologia , Regeneração Tecidual Guiada Periodontal/métodos , Queratinócitos/fisiologia , Animais , Materiais Biocompatíveis , Adesão Celular , Proliferação de Células , Células Cultivadas , Ensaio de Imunoadsorção Enzimática , Imunofluorescência , Gengiva/citologia , Humanos , Técnicas In Vitro , Interleucina-6/metabolismo , Queratinócitos/metabolismo , Microscopia Eletrônica , Nanoestruturas , Fenótipo , Suínos
13.
J Mol Endocrinol ; 44(5): 259-69, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20150327

RESUMO

Heterotrimeric G proteins transduce the signals of the largest family of membrane receptors (G protein-coupled receptors, GPCRs) hence triggering the activation of a wide variety of physiological responses. G15 is a G protein characterized by a number of functional peculiarities that make its signaling exceptional: 1) it can couple a variety of Gs-, Gi/o-, and Gq-linked receptors to phospholipase C activation; 2) relatively to other G proteins, it is poorly affected by beta-arrestin-dependent desensitization, the general mechanism that regulates GPCR function and 3) at the protein level, its expression is only detected in highly specific cell types (hematopoietic and epithelial cells). G15 alpha-subunit displays unique structural and biochemical properties, and is phylogenetically the most recent and divergent component of the Galphaq/11 subfamily. All these aspects shed a mysterious light on G15 biological role, which remains substantially elusive. Thus, far, G15 signaling has been analyzed in the context of hematopoiesis. Here, we highlight observations supporting the view that G15 functions may extend further beyond the immune system. In addition, we describe puzzling aspects of G15 signaling that offer a novel perspective in the understanding of its physiological role.


Assuntos
Subunidades alfa de Proteínas de Ligação ao GTP/fisiologia , Transdução de Sinais , Animais , Subunidades alfa de Proteínas de Ligação ao GTP/genética , Hematopoese , Humanos , Filogenia , Receptores Acoplados a Proteínas G/metabolismo
14.
PLoS One ; 4(2): e4608, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19242540

RESUMO

The interleukin-6 (IL-6) and the chemokine CCL5 are implicated in the development and progression of several forms of tumours including that of the prostate. The expression of the prostate specific membrane antigen (PSMA) is augmented in high-grade and metastatic tumors. Observations of the clinical behaviour of prostate tumors suggest that the increased secretion of IL-6 and CCL5 and the higher expression of PSMA may be correlated. We hypothesized that PSMA could be endowed with signalling properties and that its stimulation might impact on the regulation of the gene expression of IL-6 and CCL5. We herein demonstrate that the cross-linking of cell surface PSMA with specific antibodies activates the small GTPases RAS and RAC1 and the MAPKs p38 and ERK1/2 in prostate carcinoma LNCaP cells. As downstream effects of the PSMA-fostered RAS-RAC1-MAPK pathway activation we observed a strong induction of NF-kappaB activation associated with an increased expression of IL-6 and CCL5 genes. Pharmacological blockade with specific inhibitors revealed that both p38 and ERK1/2 participate in the phenomenon, although a major role exerted by p38 was evident. Finally we demonstrate that IL-6 and CCL5 enhanced the proliferative potential of LNCaP cells synergistically and in a dose-dependent manner and that CCL5 functioned by receptor-mediated activation of the STAT5-Cyclin D1 pro-proliferative pathway. The novel functions attributable to PSMA which are described in the present report may have profound influence on the survival and proliferation of prostate tumor cells, accounting for the observation that PSMA overexpression in prostate cancer patients is related to a worse prognosis.


Assuntos
Quimiocina CCL5/genética , Regulação Neoplásica da Expressão Gênica , Interleucina-6/genética , Sistema de Sinalização das MAP Quinases , Antígeno Prostático Específico/fisiologia , Neoplasias da Próstata/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Ciclina D1/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Humanos , Masculino , Proteínas Quinases Ativadas por Mitógeno/metabolismo , NF-kappa B/metabolismo , Neoplasias da Próstata/patologia , Fator de Transcrição STAT5/metabolismo
15.
Biosci Rep ; 26(6): 399-412, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17061167

RESUMO

The regulative steps that control trafficking of ion channels are fundamental determinants of their qualitative and quantitative expression on the cell membrane. In this work the trafficking of the small conductance calcium-activated potassium channel, SK3 was studied in neurons in order to identify relevant molecular domains involved in this process. Hippocampal cell cultures were transfected with fusion proteins of green fluorescent protein (GFP) and different SK3 subunit truncations. The differential distribution of the mutants was analyzed by confocal microscopy and compared to the localization of the control fusion protein with full length SK3. The transport of chimeric proteins was quantified from fluorescence images by developing a morphometric analytical method. We found that the full length SK3 was distributed in cell body, axon and dendrites, whereas the deleted forms GFPDelta578-736 (deletion of the entire C-terminal domain), GFPDeltaCaMBD (deletion of the calmodulin-binding site) and GFPDeltaN (deletion of the N-terminal domain) were not transported into cell processes but accumulated in the cell body. The GFPDelta640-736 (deletion of the distal C-terminal domain) showed a distribution similar to control. The quantification and statistical analysis confirmed the differences in distribution across the three groups. In conclusion, the current work provides evidence for a fundamental role of the N-terminal domain and the calmodulin binding domain in SK3 trafficking in neurons.


Assuntos
Hipocampo/citologia , Hipocampo/metabolismo , Neurônios/metabolismo , Canais de Potássio Ativados por Cálcio de Condutância Baixa/química , Canais de Potássio Ativados por Cálcio de Condutância Baixa/metabolismo , Animais , Células Cultivadas , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Microscopia Confocal , Ratos , Ratos Sprague-Dawley , Proteínas Recombinantes de Fusão/metabolismo , Canais de Potássio Ativados por Cálcio de Condutância Baixa/genética , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...