Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genomics ; 113(6): 3842-3850, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34547402

RESUMO

Genetic resistance to infectious pancreatic necrosis virus (IPNV) in Atlantic salmon is a rare example of a trait where a single locus (QTL) explains almost all of the genetic variation. Genetic marker tests based on this QTL on salmon chromosome 26 have been widely applied in selective breeding to markedly reduce the incidence of the disease. In the current study, whole genome sequencing and functional annotation approaches were applied to characterise genes and variants in the QTL region. This was complemented by an analysis of differential expression between salmon fry of homozygous resistant and homozygous susceptible genotypes challenged with IPNV. These analyses pointed to the NEDD-8 activating enzyme 1 (nae1) gene as a putative functional candidate underlying the QTL effect. The role of nae1 in IPN resistance was further assessed via CRISPR-Cas9 knockout of the nae1 gene and chemical inhibition of the nae1 protein activity in Atlantic salmon cell lines, both of which resulted in highly significant reduction in productive IPNV replication. In contrast, CRISPR-Cas9 knockout of a candidate gene previously purported to be a cellular receptor for the virus (cdh1) did not have a major impact on productive IPNV replication. These results suggest that nae1 is the causative gene underlying the major QTL affecting resistance to IPNV in salmon, provide further evidence for the critical role of neddylation in host-pathogen interactions, and highlight the value in combining high-throughput genomics approaches with targeted genome editing to understand the genetic basis of disease resistance.


Assuntos
Doenças dos Peixes , Vírus da Necrose Pancreática Infecciosa , Salmo salar , Animais , Doenças dos Peixes/genética , Marcadores Genéticos , Locos de Características Quantitativas , Salmo salar/genética
2.
Mar Biotechnol (NY) ; 22(5): 717-724, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32946000

RESUMO

Infectious and parasitic diseases have major negative economic and animal welfare impacts on aquaculture of salmonid species. Improved knowledge of the functional basis of host response and genetic resistance to these diseases is key to developing preventative and treatment options. Cell lines provide valuable models to study infectious diseases in salmonids, and genome editing using CRISPR/Cas systems provides an exciting avenue to evaluate the function of specific genes in those systems. While CRISPR/Cas editing has been successfully performed in a Chinook salmon cell line (CHSE-214), there are no reports to date of editing of cell lines derived from the most commercially relevant salmonid species Atlantic salmon and rainbow trout, which are difficult to transduce and therefore edit using lentivirus-mediated methods. In the current study, a method of genome editing of salmonid cell lines using ribonucleoprotein (RNP) complexes was optimised and tested in the most commonly used salmonid fish cell lines: Atlantic salmon (SHK-1 and ASK cell lines), rainbow trout (RTG-2) and Chinook salmon (CHSE-214). Electroporation of RNP based on either Cas9 or Cas12a was efficient at targeted editing of all the tested lines (typically > 90% cells edited), and the choice of enzyme expands the number of potential target sites for editing within the genomes of these species. These optimised protocols will facilitate functional genetic studies in salmonid cell lines, which are widely used as model systems for infectious diseases in aquaculture.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes/métodos , Ribonucleoproteínas/genética , Animais , Linhagem Celular , Eletroporação/métodos , Oncorhynchus mykiss/genética , Ribonucleoproteínas/química , Salmo salar/genética , Salmão/genética
3.
BMC Biotechnol ; 20(1): 35, 2020 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-32576161

RESUMO

BACKGROUND: Genome editing is transforming bioscience research, but its application to non-model organisms, such as farmed animal species, requires optimisation. Salmonids are the most important aquaculture species by value, and improving genetic resistance to infectious disease is a major goal. However, use of genome editing to evaluate putative disease resistance genes in cell lines, and the use of genome-wide CRISPR screens is currently limited by a lack of available tools and techniques. RESULTS: In the current study, we developed an optimised protocol using lentivirus transduction for efficient integration of constructs into the genome of a Chinook salmon (Oncorhynchus tshwaytcha) cell line (CHSE-214). As proof-of-principle, two target genes were edited with high efficiency in an EGFP-Cas9 stable CHSE cell line; specifically, the exogenous, integrated EGFP and the endogenous RIG-I locus. Finally, the effective use of antibiotic selection to enrich the successfully edited targeted population was demonstrated. CONCLUSIONS: The optimised lentiviral-mediated CRISPR method reported here increases possibilities for efficient genome editing in salmonid cells, in particular for future applications of genome-wide CRISPR screens for disease resistance.


Assuntos
Proteínas Associadas a CRISPR/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Edição de Genes/métodos , Lentivirus/genética , Salmonidae/genética , Animais , Sistemas CRISPR-Cas , Linhagem Celular , Sobrevivência Celular , Resistência à Doença/genética , Genoma
4.
Trends Genet ; 35(9): 672-684, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31331664

RESUMO

Aquaculture is the fastest growing food production sector and is rapidly becoming the primary source of seafood for human diets. Selective breeding programs are enabling genetic improvement of production traits, such as disease resistance, but progress is limited by the heritability of the trait and generation interval of the species. New breeding technologies, such as genome editing using CRISPR/Cas9 have the potential to expedite sustainable genetic improvement in aquaculture. Genome editing can rapidly introduce favorable changes to the genome, such as fixing alleles at existing trait loci, creating de novo alleles, or introducing alleles from other strains or species. The high fecundity and external fertilization of most aquaculture species can facilitate genome editing for research and application at a scale that is not possible in farmed terrestrial animals.


Assuntos
Aquicultura/métodos , Cruzamento/métodos , Peixes/genética , Edição de Genes/métodos , Animais , Animais Geneticamente Modificados , Cruzamento/legislação & jurisprudência , Sistemas CRISPR-Cas , Resistência à Doença , Fertilidade , Abastecimento de Alimentos , Edição de Genes/legislação & jurisprudência , Introgressão Genética , Opinião Pública , Locos de Características Quantitativas
5.
Nat Commun ; 10(1): 2297, 2019 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-31127085

RESUMO

Candida albicans is a fungal pathobiont, able to cause epithelial cell damage and immune activation. These functions have been attributed to its secreted toxin, candidalysin, though the molecular mechanisms are poorly understood. Here, we identify epidermal growth factor receptor (EGFR) as a critical component of candidalysin-triggered immune responses. We find that both C. albicans and candidalysin activate human epithelial EGFR receptors and candidalysin-deficient fungal mutants poorly induce EGFR phosphorylation during murine oropharyngeal candidiasis. Furthermore, inhibition of EGFR impairs candidalysin-triggered MAPK signalling and release of neutrophil activating chemokines in vitro, and diminishes neutrophil recruitment, causing significant mortality in an EGFR-inhibited zebrafish swimbladder model of infection. Investigation into the mechanism of EGFR activation revealed the requirement of matrix metalloproteinases (MMPs), EGFR ligands and calcium. We thus identify a PAMP-independent mechanism of immune stimulation and highlight candidalysin and EGFR signalling components as potential targets for prophylactic and therapeutic intervention of mucosal candidiasis.


Assuntos
Candida albicans/imunologia , Proteínas Fúngicas/imunologia , Interações Hospedeiro-Patógeno/imunologia , Sacos Aéreos/microbiologia , Animais , Candida albicans/genética , Candida albicans/metabolismo , Candidíase/imunologia , Candidíase/microbiologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Células Epiteliais/imunologia , Células Epiteliais/metabolismo , Células Epiteliais/microbiologia , Receptores ErbB/genética , Receptores ErbB/imunologia , Receptores ErbB/metabolismo , Feminino , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Humanos , Sistema de Sinalização das MAP Quinases/imunologia , Metaloproteinases da Matriz/imunologia , Metaloproteinases da Matriz/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Mucosa/imunologia , Mucosa/microbiologia , Faringite/imunologia , Faringite/microbiologia , Fosforilação , Peixe-Zebra
6.
Infect Immun ; 85(9)2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28607100

RESUMO

Candida albicans is a ubiquitous mucosal commensal that is normally prevented from causing acute or chronic invasive disease. Neutrophils contribute to protection in oral infection but exacerbate vulvovaginal candidiasis. To dissect the role of neutrophils during mucosal candidiasis, we took advantage of a new, transparent zebrafish swim bladder infection model. Intravital microscopic tracking of individual animals revealed that the blocking of neutrophil recruitment leads to rapid mortality in this model through faster disease progression. Conversely, artificial recruitment of neutrophils during early infection reduces disease pressure. Noninvasive longitudinal tracking showed that mortality is a consequence of C. albicans breaching the epithelial barrier and invading surrounding tissues. Accordingly, we found that a hyperfilamentous C. albicans strain breaches the epithelial barrier more frequently and causes mortality in immunocompetent zebrafish. A lack of neutrophils at the infection site is associated with less fungus-associated extracellular DNA and less damage to fungal filaments, suggesting that neutrophil extracellular traps help to protect the epithelial barrier from C. albicans breach. We propose a homeostatic model where C. albicans disease pressure is balanced by neutrophil-mediated damage of fungi, maintaining this organism as a commensal while minimizing the risk of damage to host tissue. The unequaled ability to dissect infection dynamics at a high spatiotemporal resolution makes this zebrafish model a unique tool for understanding mucosal host-pathogen interactions.

7.
Nature ; 532(7597): 64-8, 2016 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-27027296

RESUMO

Cytolytic proteins and peptide toxins are classical virulence factors of several bacterial pathogens which disrupt epithelial barrier function, damage cells and activate or modulate host immune responses. Such toxins have not been identified previously in human pathogenic fungi. Here we identify the first, to our knowledge, fungal cytolytic peptide toxin in the opportunistic pathogen Candida albicans. This secreted toxin directly damages epithelial membranes, triggers a danger response signalling pathway and activates epithelial immunity. Membrane permeabilization is enhanced by a positive charge at the carboxy terminus of the peptide, which triggers an inward current concomitant with calcium influx. C. albicans strains lacking this toxin do not activate or damage epithelial cells and are avirulent in animal models of mucosal infection. We propose the name 'Candidalysin' for this cytolytic peptide toxin; a newly identified, critical molecular determinant of epithelial damage and host recognition of the clinically important fungus, C. albicans.


Assuntos
Candida albicans/metabolismo , Candida albicans/patogenicidade , Citotoxinas/metabolismo , Proteínas Fúngicas/toxicidade , Micotoxinas/toxicidade , Fatores de Virulência/metabolismo , Cálcio/metabolismo , Candida albicans/imunologia , Candidíase/metabolismo , Candidíase/microbiologia , Candidíase/patologia , Permeabilidade da Membrana Celular/efeitos dos fármacos , Citotoxinas/genética , Citotoxinas/toxicidade , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/imunologia , Células Epiteliais/patologia , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Interações Hospedeiro-Patógeno/imunologia , Humanos , Mucosa/microbiologia , Mucosa/patologia , Micotoxinas/genética , Micotoxinas/metabolismo , Transdução de Sinais/efeitos dos fármacos , Virulência/efeitos dos fármacos , Fatores de Virulência/genética , Fatores de Virulência/toxicidade
8.
Dis Model Mech ; 8(11): 1375-88, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26398938

RESUMO

Mucormycosis is an emerging fungal infection that is clinically difficult to manage, with increasing incidence and extremely high mortality rates. Individuals with diabetes, suppressed immunity or traumatic injury are at increased risk of developing disease. These individuals often present with defects in phagocytic effector cell function. Research using mammalian models and phagocytic effector cell lines has attempted to decipher the importance of the innate immune system in host defence against mucormycosis. However, these model systems have not been satisfactory for direct analysis of the interaction between innate immune effector cells and infectious sporangiospores in vivo. Here, we report the first real-time in vivo analysis of the early innate immune response to mucormycete infection using a whole-animal zebrafish larval model system. We identified differential host susceptibility, dependent on the site of infection (hindbrain ventricle and swim bladder), as well as differential functions of the two major phagocyte effector cell types in response to viable and non-viable spores. Larval susceptibility to mucormycete spore infection was increased upon immunosuppressant treatment. We showed for the first time that macrophages and neutrophils were readily recruited in vivo to the site of infection in an intact host and that spore phagocytosis can be observed in real-time in vivo. While exploring innate immune effector recruitment dynamics, we discovered the formation of phagocyte clusters in response to fungal spores that potentially play a role in fungal spore dissemination. Spores failed to activate pro-inflammatory gene expression by 6 h post-infection in both infection models. After 24 h, induction of a pro-inflammatory response was observed only in hindbrain ventricle infections. Only a weak pro-inflammatory response was initiated after spore injection into the swim bladder during the same time frame. In the future, the zebrafish larva as a live whole-animal model system will contribute greatly to the study of molecular mechanisms involved in the interaction of the host innate immune system with fungal spores during mucormycosis.


Assuntos
Sacos Aéreos/imunologia , Infecções Fúngicas do Sistema Nervoso Central/imunologia , Imunidade Inata , Mucor/imunologia , Mucormicose/imunologia , Rombencéfalo/imunologia , Peixe-Zebra/imunologia , Sacos Aéreos/efeitos dos fármacos , Sacos Aéreos/embriologia , Sacos Aéreos/metabolismo , Sacos Aéreos/microbiologia , Animais , Infecções Fúngicas do Sistema Nervoso Central/metabolismo , Infecções Fúngicas do Sistema Nervoso Central/microbiologia , Modelos Animais de Doenças , Interações Hospedeiro-Patógeno , Imunidade Inata/efeitos dos fármacos , Imunossupressores/farmacologia , Mediadores da Inflamação/metabolismo , Larva/imunologia , Larva/microbiologia , Macrófagos/imunologia , Macrófagos/microbiologia , Mucor/patogenicidade , Mucormicose/metabolismo , Mucormicose/microbiologia , Neutrófilos/imunologia , Neutrófilos/microbiologia , Fagocitose , Rombencéfalo/efeitos dos fármacos , Rombencéfalo/embriologia , Rombencéfalo/metabolismo , Rombencéfalo/microbiologia , Fatores de Tempo , Peixe-Zebra/embriologia , Peixe-Zebra/metabolismo , Peixe-Zebra/microbiologia
9.
J Vis Exp ; (93): e52182, 2014 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-25490695

RESUMO

Early defense against mucosal pathogens consists of both an epithelial barrier and innate immune cells. The immunocompetency of both, and their intercommunication, are paramount for the protection against infections. The interactions of epithelial and innate immune cells with a pathogen are best investigated in vivo, where complex behavior unfolds over time and space. However, existing models do not allow for easy spatio-temporal imaging of the battle with pathogens at the mucosal level. The model developed here creates a mucosal infection by direct injection of the fungal pathogen, Candida albicans, into the swimbladder of juvenile zebrafish. The resulting infection enables high-resolution imaging of epithelial and innate immune cell behavior throughout the development of mucosal disease. The versatility of this method allows for interrogation of the host to probe the detailed sequence of immune events leading to phagocyte recruitment and to examine the roles of particular cell types and molecular pathways in protection. In addition, the behavior of the pathogen as a function of immune attack can be imaged simultaneously by using fluorescent protein-expressing C. albicans. Increased spatial resolution of the host-pathogen interaction is also possible using the described rapid swimbladder dissection technique. The mucosal infection model described here is straightforward and highly reproducible, making it a valuable tool for the study of mucosal candidiasis. This system may also be broadly translatable to other mucosal pathogens such as mycobacterial, bacterial or viral microbes that normally infect through epithelial surfaces.


Assuntos
Sacos Aéreos/microbiologia , Candidíase/microbiologia , Modelos Animais de Doenças , Animais , Candida albicans/imunologia , Candidíase/imunologia , Interações Hospedeiro-Patógeno/imunologia , Fagócitos/imunologia , Peixe-Zebra
10.
Dis Model Mech ; 7(11): 1227-37, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25190709

RESUMO

Seasonal influenza virus infections cause annual epidemics and sporadic pandemics. These present a global health concern, resulting in substantial morbidity, mortality and economic burdens. Prevention and treatment of influenza illness is difficult due to the high mutation rate of the virus, the emergence of new virus strains and increasing antiviral resistance. Animal models of influenza infection are crucial to our gaining a better understanding of the pathogenesis of and host response to influenza infection, and for screening antiviral compounds. However, the current animal models used for influenza research are not amenable to visualization of host-pathogen interactions or high-throughput drug screening. The zebrafish is widely recognized as a valuable model system for infectious disease research and therapeutic drug testing. Here, we describe a zebrafish model for human influenza A virus (IAV) infection and show that zebrafish embryos are susceptible to challenge with both influenza A strains APR8 and X-31 (Aichi). Influenza-infected zebrafish show an increase in viral burden and mortality over time. The expression of innate antiviral genes, the gross pathology and the histopathology in infected zebrafish recapitulate clinical symptoms of influenza infections in humans. This is the first time that zebrafish embryos have been infected with a fluorescent IAV in order to visualize infection in a live vertebrate host, revealing a pattern of vascular endothelial infection. Treatment of infected zebrafish with a known anti-influenza compound, Zanamivir, reduced mortality and the expression of a fluorescent viral gene product, demonstrating the validity of this model to screen for potential antiviral drugs. The zebrafish model system has provided invaluable insights into host-pathogen interactions for a range of infectious diseases. Here, we demonstrate a novel use of this species for IAV research. This model has great potential to advance our understanding of influenza infection and the associated host innate immune response.


Assuntos
Antivirais/uso terapêutico , Modelos Animais de Doenças , Vírus da Influenza A/isolamento & purificação , Influenza Humana/virologia , Animais , Humanos , Vírus da Influenza A/fisiologia , Influenza Humana/tratamento farmacológico , Replicação Viral , Peixe-Zebra/embriologia
11.
Dev Comp Immunol ; 46(1): 108-15, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24491522

RESUMO

Unique imaging tools and practical advantages have made zebrafish a popular model to investigate in vivo host-pathogen interactions. These studies have uncovered details of the mechanisms involved in several human infections. Until recently, studies using this versatile host were limited to viral and prokaryotic pathogens. Eukaryotic pathogens are a diverse group with a major impact on the human and fish populations. The relationships of eukaryote pathogens with their hosts are complex and many aspects remain obscure. The small and transparent zebrafish, with its conserved immune system and amenability to genetic manipulation, make it an exciting model for quantitative study of the core strategies of eukaryotic pathogens and their hosts. The only thing to do now is realize its potential for advancement of biomedical and aquaculture research.


Assuntos
Modelos Animais de Doenças , Eucariotos/fisiologia , Interações Hospedeiro-Patógeno , Infecções/imunologia , Peixe-Zebra , Animais , Eucariotos/classificação , Eucariotos/citologia , Eucariotos/patogenicidade , Humanos , Infecções/microbiologia , Infecções/parasitologia
12.
PLoS Pathog ; 9(10): e1003634, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24098114

RESUMO

Candida albicans is a human commensal and clinically important fungal pathogen that grows as both yeast and hyphal forms during human, mouse and zebrafish infection. Reactive oxygen species (ROS) produced by NADPH oxidases play diverse roles in immunity, including their long-appreciated function as microbicidal oxidants. Here we demonstrate a non-traditional mechanistic role of NADPH oxidase in promoting phagocyte chemotaxis and intracellular containment of fungi to limit filamentous growth. We exploit the transparent zebrafish model to show that failed NADPH oxidase-dependent phagocyte recruitment to C. albicans in the first four hours post-infection permits fungi to germinate extracellularly and kill the host. We combine chemical and genetic tools with high-resolution time-lapse microscopy to implicate both phagocyte oxidase and dual-specific oxidase in recruitment, suggesting that both myeloid and non-myeloid cells promote chemotaxis. We show that early non-invasive imaging provides a robust tool for prognosis, strongly connecting effective early immune response with survival. Finally, we demonstrate a new role of a key regulator of the yeast-to-hyphal switching program in phagocyte-mediated containment, suggesting that there are species-specific methods for modulation of NADPH oxidase-independent immune responses. These novel links between ROS-driven chemotaxis and fungal dimorphism expand our view of a key host defense mechanism and have important implications for pathogenesis.


Assuntos
Candida albicans/metabolismo , Candidíase/enzimologia , NADPH Oxidases/metabolismo , Fagócitos/enzimologia , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/metabolismo , Animais , Candida albicans/genética , Candidíase/genética , Quimiotaxia/genética , Humanos , Camundongos , NADPH Oxidases/genética , Fagócitos/microbiologia , Espécies Reativas de Oxigênio/metabolismo , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética
13.
Dis Model Mech ; 6(5): 1260-70, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23720235

RESUMO

The epithelium performs a balancing act at the interface between an animal and its environment to enable both pathogen killing and tolerance of commensal microorganisms. Candida albicans is a clinically important human commensal that colonizes all human mucosal surfaces, yet is largely prevented from causing mucosal infections in immunocompetent individuals. Despite the importance of understanding host-pathogen interactions at the epithelium, no immunocompetent vertebrate model has been used to visualize these dynamics non-invasively. Here we demonstrate important similarities between swimbladder candidiasis in the transparent zebrafish and mucosal infection at the mammalian epithelium. Specifically, in the zebrafish swimmbladder infection model, we show dimorphic fungal growth, both localized and tissue-wide epithelial NF-κB activation, induction of NF-κB -dependent proinflammatory genes, and strong neutrophilia. Consistent with density-dependence models of host response based primarily on tissue culture experiments, we show that only high-level infection provokes widespread activation of NF-κB in epithelial cells and induction of proinflammatory genes. Similar to what has been found using in vitro mammalian models, we find that epithelial NF-κB activation can occur at a distance from the immediate site of contact with epithelial cells. Taking advantage of the ability to non-invasively image infection and host signaling at high resolution, we also report that epithelial NF-κB activation is diminished when phagocytes control the infection. This is the first system to model host response to mucosal infection in the juvenile zebrafish, and offers unique opportunities to investigate the tripartite interactions of C. albicans, epithelium and immune cells in an intact host.


Assuntos
Candidíase/genética , Regulação da Expressão Gênica , Inflamação/genética , Transtornos Leucocíticos/complicações , Mucosa/microbiologia , NF-kappa B/metabolismo , Peixe-Zebra/genética , Sacos Aéreos/metabolismo , Sacos Aéreos/microbiologia , Sacos Aéreos/patologia , Animais , Candida albicans/fisiologia , Candidíase/complicações , Candidíase/patologia , Células Epiteliais/metabolismo , Células Epiteliais/microbiologia , Células Epiteliais/patologia , Feminino , Humanos , Inflamação/complicações , Inflamação/patologia , Masculino , Mucosa/patologia , Proteína Amiloide A Sérica/genética , Proteína Amiloide A Sérica/metabolismo , Caracteres Sexuais , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Peixe-Zebra/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...