Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Endocrinology ; 150(11): 5125-34, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19797403

RESUMO

Calcium entry is one of the main regulators of intracellular signaling. Here, we have described the importance of sphingosine, sphingosine kinase 1 (SK1), and sphingosine 1-phosphate (S1P) in regulating calcium entry in thyroid FRTL-5 cells. In cells incubated with the phosphatase inhibitor calyculin A, which evokes calcium entry without mobilizing sequestered intracellular calcium, sphingosine inhibited calcium entry in a concentration-dependent manner. Furthermore, inhibiting SK1 or the ATP-binding cassette ABCC1 multidrug transporter attenuated calcium entry. The addition of exogenous S1P restored calcium entry. Neither sphingosine nor inhibition of SK1 attenuated thapsigargin-evoked calcium entry. Blocking S1P receptor 2 or phospholipase C attenuated calcium entry, whereas blocking S1P receptor 3 did not. Overexpression of wild-type SK1, but not SK2, enhanced calyculin-evoked calcium entry compared with mock-transfected cells, whereas calcium entry was decreased in cells transfected with the dominant-negative G82D SK1 mutant. Exogenous S1P restored calcium entry in G82D cells. Our results suggest that the calcium entry pathway is blocked by sphingosine and that activation of SK1 and the production of S1P, through an autocrine mechanism, facilitate calcium entry through activation of S1P receptor 2. This is a novel mechanism by which the sphingosine-S1P rheostat regulates cellular calcium homeostasis.


Assuntos
Comunicação Autócrina , Cálcio/metabolismo , Lisofosfolipídeos/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Transdução de Sinais , Esfingosina/análogos & derivados , Glândula Tireoide/metabolismo , Animais , Linhagem Celular , Ratos , Receptores de Lisoesfingolipídeo/metabolismo , Esfingosina/metabolismo , Glândula Tireoide/citologia , Glândula Tireoide/enzimologia
2.
J Biol Chem ; 279(48): 49816-24, 2004 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-15381705

RESUMO

Calcium entry through store-operated calcium channels is an important entry mechanism. In the present report we have described a novel calcium entry pathway that is independent of depletion of intracellular calcium stores. Treatment of the cells with the phosphatase inhibitor calyculin A (caly A), which blocked thapsigargin-evoked store-operated calcium entry (SOCE), induced a potent concentration-dependent calcium entry. In a calcium-free buffer, acute addition of caly A evoked a very modest increase in cytosolic free calcium ([Ca(2+)](i)). This increase was not from the agonist-mobilizable calcium stores, as the thapsigargin-evoked increase in [Ca(2+)](i) was unaltered in caly A-treated cells. The caly A-evoked calcium entry was not blocked by Gd(3+) or 2-APB, whereas SOCE was. Caly A enhanced the entry of barium, indicating that the increase in intracellular calcium was not the result of a decreased extrusion of calcium from the cytosol. Jasplakinolide and cytochalasin D had only marginal effects on calcium entry. The protein kinase A (PKA) inhibitor H-89 and an inhibitory peptide for PKA abolished the caly A-evoked entry of both calcium and barium. The SOCE was, however, enhanced in cells treated with H-89. In cells grown in the absence of thyrotropin (TSH), the caly A-evoked entry of calcium was smaller compared with cells grown in TSH-containing buffer. Stimulation of cells grown without TSH with forskolin or TSH restored the calyculin A-evoked calcium entry to that seen in cells grown in TSH-containing buffer. SOCE was decreased in these cells. Our results thus suggest that TSH, through the production of cAMP and activation of PKA, regulates a calcium entry pathway in thyroid cells. The pathway is distinctly different from the SOCE. As TSH is the main regulator of thyroid cells, we suggest that the novel calcium entry pathway participates in the regulation of basal calcium levels in thyroid cells.


Assuntos
Cálcio/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/antagonistas & inibidores , Glândula Tireoide/metabolismo , Actinas/metabolismo , Animais , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Toxinas Marinhas , Oxazóis/farmacologia , Ratos , Tapsigargina/farmacologia , Glândula Tireoide/efeitos dos fármacos , Glândula Tireoide/enzimologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA