Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Intervalo de ano de publicação
2.
Front Microbiol ; 14: 1253480, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37840737

RESUMO

Spore-forming probiotic bacteria offer interesting properties as they have an intrinsic high stability, and when consumed, they are able to survive the adverse conditions encountered during the transit thorough the host gastrointestinal (GI) tract. A traditional healthy food, natto, exists in Japan consisting of soy fermented by the spore-forming bacterium Bacillus subtilis natto. The consumption of natto is linked to many beneficial health effects, including the prevention of high blood pressure, osteoporosis, and cardiovascular-associated disease. We hypothesize that the bacterium B. subtilis natto plays a key role in the beneficial effects of natto for humans. Here, we present the isolation of B. subtilis DG101 from natto and its characterization as a novel spore-forming probiotic strain for human consumption. B. subtilis DG101 was non-hemolytic and showed high tolerance to lysozyme, low pH, bile salts, and a strong adherence ability to extracellular matrix proteins (i.e., fibronectin and collagen), demonstrating its potential application for competitive exclusion of pathogens. B. subtilis DG101 forms robust liquid and solid biofilms and expresses several extracellular enzymes with activity against food diet-associated macromolecules (i.e., proteins, lipids, and polysaccharides) that would be important to improve food diet digestion by the host. B. subtilis DG101 was able to grow in the presence of toxic metals (i.e., chromium, cadmium, and arsenic) and decreased their bioavailability, a feature that points to this probiotic as an interesting agent for bioremediation in cases of food and water poisoning with metals. In addition, B. subtilis DG101 was sensitive to antibiotics commonly used to treat infections in medical settings, and at the same time, it showed a potent antimicrobial effect against pathogenic bacteria and fungi. In mammalians (i.e., rats), B. subtilis DG101 colonized the GI tract, and improved the lipid and protein serum homeostasis of animals fed on the base of a normal- or a deficient-diet regime (dietary restriction). In the animal model for longevity studies, Caenorhabditis elegans, B. subtilis DG101 significantly increased the animal lifespan and prevented its age-related behavioral decay. Overall, these results demonstrate that B. subtilis DG101 is the key component of natto with interesting probiotic properties to improve and protect human health.

3.
Bio Protoc ; 13(9): e4650, 2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-37188102

RESUMO

A basic function of the nervous system is to confer the ability to detect external stimuli and generate appropriate behavioral and physiological responses. These can be modulated when parallel streams of information are provided to the nervous system and neural activity is appropriately altered. The nematode Caenorhabditis elegans utilizes a simple and well characterized neural circuit to mediate avoidance or attraction responses to stimuli, such as the volatile odorant octanol or diacetyl (DA), respectively. Aging and neurodegeneration constitute two important factors altering the ability to detect external signals and, therefore, changing behavior. Here, we present a modified protocol to assess avoidance or attraction responses to diverse stimuli in healthy and worm models associated with neurodegenerative diseases.

4.
Bio Protoc ; 12(14)2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35978572

RESUMO

Aging and neuronal deterioration constitute important risk factors for the development of neuronal-related diseases, such as different dementia. The nematode Caenorhabditis elegans has emerged as a popular model system for studying neurodegeneration diseases, due to its complete neuronal connectivity map. DiI is a red fluorescent dye that can fill the worm amphid neurons and enables the visualization of their neurodegeneration over time. This protocol provides an efficient, fast, and safe method to stain worm amphid neurons to highlight the chemosensory structures of live nematodes.

5.
Clin Case Rep ; 8(12): 3120-3125, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33363892

RESUMO

The gut microbiota, and particularly probiotic bacteria, has emerged as a promising and novel intervention to fight the looming worldwide diabetes epidemic when combined with the appropriate medication. Herein, we report two cases of patient with type 2 diabetes refractory to conventional therapy that showed notable improvement after probiotic intervention.

6.
Front Microbiol ; 11: 1761, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33042030

RESUMO

Alternative sigma factors have led the core RNA polymerase (RNAP) to recognize different sets of promoters to those recognized by the housekeeping sigma A-directed RNAP. This change in RNAP promoter selectivity allows a rapid and flexible reformulation of the genetic program to face environmental and metabolic stimuli that could compromise bacterial fitness. The model bacterium Bacillus subtilis constitutes a matchless living system in the study of the role of alternative sigma factors in gene regulation and physiology. SigB from B. subtilis was the first alternative sigma factor described in bacteria. Studies of SigB during the last 40 years have shown that it controls a genetic universe of more than 150 genes playing crucial roles in stress response, adaption, and survival. Activation of SigB relies on three separate pathways that specifically respond to energy, environmental, and low temperature stresses. SigB homologs, present in other Gram-positive bacteria, also play important roles in virulence against mammals. Interestingly, during recent years, other unexpected B. subtilis responses were found to be controlled by SigB. In particular, SigB controls the efficiencies of spore and biofilm formation, two important features that play critical roles in adaptation and survival in planktonic and sessile B. subtilis communities. In B. subtilis, SigB induces the expression of the Spo0E aspartyl-phosphatase, which is responsible for the blockage of sporulation initiation. The upregulated activity of Spo0E connects the two predominant adaptive pathways (i.e., sporulation and stress response) present in B. subtilis. In addition, the RsbP serine-phosphatase, belonging to the energy stress arm of the SigB regulatory cascade, controls the expression of the key transcription factor SinR to decide whether cells residing in the biofilm remain in and maintain biofilm growth or scape to colonize new niches through biofilm dispersal. SigB also intervenes in the recognition of and response to surrounding microorganisms, a new SigB role that could have an agronomic impact. SigB is induced when B. subtilis is confronted with phytopathogenic fungi (e.g., Fusarium verticillioides) and halts fungal growth to the benefit of plant growth. In this article, we update and review literature on the different regulatory networks that control the activation of SigB and the new roles that have been described the recent years.

7.
J Alzheimers Dis ; 73(3): 1035-1052, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31884470

RESUMO

Multiple causes, apart from genetic inheritance, predispose to the production and aggregation of amyloid-ß (Aß) peptide and Alzheimer's disease (AD) development in the older population. There is currently no therapy or medicine to prevent or delay AD progression. One novel strategy against AD might involve the use of psychobiotics, probiotic gut bacteria with specific mental health benefits. Here, we report the neuronal and behavioral protective effects of the probiotic bacterium Bacillus subtilis in a Caenorhabditis elegans AD model. Aging and neuronal deterioration constitute important risk factors for AD development, and we showed that B. subtilis significantly delayed both detrimental processes in the wild-type C. elegans strain N2 compared with N2 worms colonized by the non-probiotic Escherichia coli OP50 strain. Importantly, B. subtilis alleviated the AD-related paralysis phenotype of the transgenic C. elegans strains CL2120 and GMC101 that express, in body wall muscle cells, the toxic peptides Aß3-42 and Aß1-42, respectively. B. subtilis-colonized CL2355 worms were protected from the behavioral deficits (e.g., poor chemotactic response and decreased body bends) produced by pan-neuronal Aß1-42 expression. Notably, B. subtilis restored the lifespan level of C. elegans strains that express Aß to values similar to the life expectancy of the wild-type strain N2 fed on E. coli OP50 cells. The B. subtilis proficiencies in quorum-sensing peptide (i.e., the Competence Sporulation Factor, CSF) synthesis and gut-associated biofilm formation (related to the anti-aging effect of the probiotic) play a crucial role in the anti-AD effects of B. subtilis. These novel results are discussed in the context of how B. subtilis might exert its beneficial effects from the gut to the brain of people with or at risk of developing AD.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Bacillus subtilis , Comportamento Animal/efeitos dos fármacos , Caenorhabditis elegans/efeitos dos fármacos , Longevidade/efeitos dos fármacos , Degeneração Neural/tratamento farmacológico , Probióticos/uso terapêutico , Envelhecimento/efeitos dos fármacos , Envelhecimento/genética , Envelhecimento/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/genética , Peptídeos beta-Amiloides/metabolismo , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Quimiotaxia/efeitos dos fármacos , Modelos Animais de Doenças , Progressão da Doença , Degeneração Neural/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Probióticos/farmacologia
8.
Bio Protoc ; 9(22): e3425, 2019 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-33654922

RESUMO

Surface-associate motility on biotic and abiotic environments is a key mechanism used by the model bacterium Bacillus subtilis and its closest relatives (i.e., B. amyloliquefaciens, B. thuringiensis, B. cereus, B. pumilus) for surface colonization and spreading across surfaces. The study of this mechanism in a research, industrial or clinic laboratory is essential; however, precautions should be taken for the reproducibility of the results, for example, the procedure to inoculate the bacteria on the testing plate, the humidity of the plate and the agar concentration. In this protocol, we describe, using Bacillus subtilis, how to perform these assays and, in addition, we show how by varying the agar concentration in the plate, you can make a first approximation of what type of motility has other bacterial species.

10.
Microb Cell ; 4(4): 133-136, 2017 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-28435840

RESUMO

Probiotics are live microorganisms that have beneficial effects on host health, including extended lifespan, when they are administered or present in adequate quantities. However, the mechanisms by which probiotics stimulate host longevity remain unclear and very poorly understood. In a recent study (Nat. Commun. 8, 14332 (2017) doi: 10.1038/ncomms14332), we used the spore-forming probiotic bacterium Bacillus subtilis and the model organism Caenorhabditis elegans to study the mechanism by which a probiotic bacterium affects host longevity. We found that biofilm-proficient B. subtilis colonized the C. elegans gut and extended the worm lifespan significantly longer than did biofilm-deficient isogenic strains. In addition to biofilm proficiency, the quorum-sensing pentapeptide CSF and nitric oxide (NO) represent the entire B. subtilis repertoire responsible for the extended longevity of C. elegans. B. subtilis grown under biofilm-supporting conditions synthesized higher levels of NO and CSF than under planktonic growth conditions, emphasizing the key role of the biofilm in slowing host aging. Significantly, the prolongevity effect of B. subtilis was primarily due to a downregulation of the insulin-like signaling system that precisely is a key partaker in the healthy longevity of human centenarians. These findings open the possibility to test if the regular consumption of B. subtilis incorporated in foods and beverages could significantly extend human life expectancy and contribute to stop the development of age-related diseases.

11.
Mol Microbiol ; 104(5): 804-821, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28294433

RESUMO

Bacterial adherence to extracellular matrix proteins (ECMp) plays important roles during host-pathogen interaction, however its genetic regulation remains poorly understood. yloA of the model bacterium Bacillus subtilis shows high homology to genes encoding fibronectin-binding proteins of Gram-positive pathogens. Here, we characterized the regulatory network of YloA-dependent adhesive properties of the probiotic B. subtilis natto (Bsn). YloA-proficient, but not YloA-deficient, Bsn specifically bound to ECMp in a concentration-dependent manner and were proficient in biofilm formation. yloA expression showed a continuous increase in activity during the growth phase and decreased during the stationary phase. The transcription factors AbrB and DegU downregulated yloA expression during the logarithmic and stationary growth phases respectively. Analysis of the yloA promoter region revealed the presence of AT-rich direct and inverted repeats previously reported to function as DegU-recognized binding sites. In spo0A cells, yloA expression was completely turned off because of upregulation of AbrB throughout growth. Accordingly, DNase I footprinting analysis confirmed that AbrB bound to the promoter region of yloA. Interestingly, Bsn bound fibronectin with higher affinity, lower Kd, than several bacterial pathogens and competitively excluded them from binding to immobilized-fibronectin, a finding that might be important for the anti-infective properties of B. subtilis and its relatives.


Assuntos
Bacillus subtilis/metabolismo , Proteínas de Transporte/metabolismo , Matriz Extracelular/metabolismo , Fibronectinas/metabolismo , Bacillus subtilis/citologia , Bacillus subtilis/genética , Aderência Bacteriana/fisiologia , Proteínas de Bactérias/metabolismo , Sequência de Bases , Proteínas de Ligação a DNA/metabolismo , Matriz Extracelular/microbiologia , Proteínas da Matriz Extracelular/metabolismo , Regulação Bacteriana da Expressão Gênica , Interações Hospedeiro-Patógeno , Humanos , Filogenia , Regiões Promotoras Genéticas , Elementos Reguladores de Transcrição , Fatores de Transcrição/metabolismo , Transcrição Gênica
12.
Nat Commun ; 8: 14332, 2017 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-28134244

RESUMO

Beneficial bacteria have been shown to affect host longevity, but the molecular mechanisms mediating such effects remain largely unclear. Here we show that formation of Bacillus subtilis biofilms increases Caenorhabditis elegans lifespan. Biofilm-proficient B. subtilis colonizes the C. elegans gut and extends worm lifespan more than biofilm-deficient isogenic strains. Two molecules produced by B. subtilis - the quorum-sensing pentapeptide CSF and nitric oxide (NO) - are sufficient to extend C. elegans longevity. When B. subtilis is cultured under biofilm-supporting conditions, the synthesis of NO and CSF is increased in comparison with their production under planktonic growth conditions. We further show that the prolongevity effect of B. subtilis biofilms depends on the DAF-2/DAF-16/HSF-1 signalling axis and the downregulation of the insulin-like signalling (ILS) pathway.


Assuntos
Bacillus subtilis/fisiologia , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiologia , Longevidade/fisiologia , Transdução de Sinais/fisiologia , Animais , Biofilmes , Regulação para Baixo , Comportamento Alimentar/fisiologia , Fatores de Transcrição Forkhead/metabolismo , Insulina/metabolismo , Óxido Nítrico/metabolismo , Comportamento Predatório/fisiologia , Receptor de Insulina/metabolismo , Fatores de Transcrição/metabolismo
13.
Bio Protoc ; 7(12): e2345, 2017 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-34541096

RESUMO

Determining an accurate count of intestinal bacteria from Caenorhabditis elegans is one critical way to assess colonization proficiency by a given bacteria. This can be accomplished by culturing appropriate dilutions of worm gut bacteria on selective or differential agarized media. Because of the high concentration of bacteria in gut worm, dilution is necessary before plating onto growth media. Serial dilutions can reduce the concentration of the original intestinal sample to levels low enough for single colonies to be grown on media plates, allowing for the calculation of the initial counts of bacteria in the intestinal sample.

14.
Bio Protoc ; 7(13): e2379, 2017 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-34541119

RESUMO

The cell-to-cell communication and division of labour that occurs inside a beneficial biofilm produce significant differences in gene expression compared with the gene expression pattern of cells grew under planktonic conditions. In this sense, the levels of NO (nitric oxide) and CSF (Competence Sporulation Stimulating Factor) produced in Bacillus subtilis cultures have been measured only under planktonic growth conditions. We sought to determine whether NO and/or CSF production is affected in B. subtilis cells that develop as a biofilm. To measure the production levels of the two prolongevity molecules, we grew B. subtilis cells under planktonic and biofilm supporting condition.

15.
VacciMonitor ; 25(1)2016. tab, graf
Artigo em Espanhol | CUMED | ID: cum-63022

RESUMO

Las esporas de Bacillus subtilis, generalmente reconocidas como seguras, han recibido una creciente atención en aplicaciones biotecnológicas en formulaciones vacunales, sobre todo como adyuvantes. Este trabajo presenta una revisión actualizada de la acción adyuvante de las esporas de B. subtilis y conjuntamente se expone nuestra experiencia por vía oral (o.r) e intranasal (i.n) como adyuvante frente antígenos modelos ovoalbúmina (Ova) y toxoide tetánico (TT). Se realizó una revisión documental sobre B. subtilis, adyuvante, vacuna y vía mucosal en MEDLINE a través de PubMed; también se revisaron las bases de datos SciELO y LILACS. Para la exploración de la capacidad adyuvante se trabajó con esporas de B. subtilis (cepa RG 4365). Se inmunizaron ratones Balb/c por vía mucosal con esporas coadministradas con los antígenos modelos, y se midió las respuesta de anticuerpos específicos en suero, saliva y heces por método de ELISA. La revisión realizada evidenció la existencia de varios trabajos que utilizan las esporas de B. subtilis por diferentes metodologías y vías de administración como adyuvante, siendo la expresión de antígenos recombinantes la más utilizada, así como la vía o.r entre la aplicación mucosa. En nuestro trabajo se obtuvo un aumento de la respuesta sérica de IgG, subclases IgG1 e IgG2a y de IgA específicos en saliva y heces en los grupos inmunizados con esporas coadministradas con Ova y con TT por ambas vías, significativamente superior a los grupos controles (p<0,05). Estos datos sugieren que las esporas son eficientes adyuvantes pues aumentan la respuesta inmune humoral sistémica y mucosal y resalta su potencial clínico en futuras vacunas mucosales(AU)


Bacillus subtilis spores generally considered safe, have received growing attention due to their potential biotechnological applications including vaccine formulations, particularly as vaccine adjuvants. In the present review we present the status of the adjuvanticity of the spore B. subtilis for mucosal route and our experience regarding its adjuvant activity induced against two model antigens, Tetanus Toxoid (TT) and ovalbumin (Ova) for oral (o.r) and intranasal (i.n) immunization. A document review on B. subtilis, adjuvant, vaccine and mucosal route was carried out in MEDLINE by PubMed, SciELO and LILACS databases. B. subtilis spores (RG 4365) were used for the exploration of the adjuvant activity. Balb/c mice were immunized by i.n and o.r route with TT or Ova combined with B. subtilis spores and specific antibody response in serum, saliva and fecal were measured by ELISA. This review showed the existence of several papers using B. subtilis spores as adjuvant by different methodologies and administration routes, being the expression of recombinant antigens and the the o.r route the most widely used. In our work we found an increase of seric response of IgG, subclass IgG1 and IgG2a and specific IgA in saliva and feces in groups immunized with spores coadministered with Ova and TT by both routes, which was significantly superior to control groups (p<0.05). These data suggest that spores are an efficient mucosal and systemic adjuvant for enhancing humoral immune responses and highlight their clinical potential for future mucosal vaccines(AU)


Assuntos
Humanos , Bacillus subtilis/patogenicidade , Vacinas/uso terapêutico , Administração Intranasal/métodos , Esporos Bacterianos
16.
mBio ; 6(4): e00581, 2015 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-26152584

RESUMO

UNLABELLED: Multicellular biofilm formation and surface motility are bacterial behaviors considered mutually exclusive. However, the basic decision to move over or stay attached to a surface is poorly understood. Here, we discover that in Bacillus subtilis, the key root biofilm-controlling transcription factor Spo0A~Pi (phosphorylated Spo0A) governs the flagellum-independent mechanism of social sliding motility. A Spo0A-deficient strain was totally unable to slide and colonize plant roots, evidencing the important role that sliding might play in natural settings. Microarray experiments plus subsequent genetic characterization showed that the machineries of sliding and biofilm formation share the same main components (i.e., surfactin, the hydrophobin BslA, exopolysaccharide, and de novo-formed fatty acids). Sliding proficiency was transduced by the Spo0A-phosphorelay histidine kinases KinB and KinC. We discovered that potassium, a previously known inhibitor of KinC-dependent biofilm formation, is the specific sliding-activating signal through a thus-far-unnoticed cytosolic domain of KinB, which resembles the selectivity filter sequence of potassium channels. The differential expression of the Spo0A~Pi reporter abrB gene and the different levels of the constitutively active form of Spo0A, Sad67, in Δspo0A cells grown in optimized media that simultaneously stimulate motile and sessile behaviors uncover the spatiotemporal response of KinB and KinC to potassium and the gradual increase in Spo0A~Pi that orchestrates the sequential activation of sliding, followed by sessile biofilm formation and finally sporulation in the same population. Overall, these results provide insights into how multicellular behaviors formerly believed to be antagonistic are coordinately activated in benefit of the bacterium and its interaction with the host. IMPORTANCE: Alternation between motile and sessile behaviors is central to bacterial adaptation, survival, and colonization. However, how is the collective decision to move over or stay attached to a surface controlled? Here, we use the model plant-beneficial bacterium Bacillus subtilis to answer this question. Remarkably, we discover that sessile biofilm formation and social sliding motility share the same structural components and the Spo0A regulatory network via sensor kinases, KinB and KinC. Potassium, an inhibitor of KinC-dependent biofilm formation, triggers sliding via a potassium-perceiving cytosolic domain of KinB that resembles the selectivity filter of potassium channels. The spatiotemporal response of these kinases to variable potassium levels and the gradual increase in Spo0A~Pi levels that orchestrates the activation of sliding before biofilm formation shed light on how multicellular behaviors formerly believed to be antagonistic work together to benefit the population fitness.


Assuntos
Bacillus subtilis/enzimologia , Bacillus subtilis/fisiologia , Biofilmes/crescimento & desenvolvimento , Regulação Bacteriana da Expressão Gênica , Potássio/metabolismo , Proteínas Quinases/metabolismo , Bacillus subtilis/metabolismo , Perfilação da Expressão Gênica , Histidina Quinase , Locomoção , Dados de Sequência Molecular , Análise de Sequência de DNA
17.
Mater Sci Eng C Mater Biol Appl ; 43: 630-40, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25175258

RESUMO

Here we describe the development of novel nanostructured coating systems with improved photocatalytic and antibacterial activities. These systems comprise a layer of SiO2 followed by a layer of mesoporous or dense TiO2-anatase, and doping with silver nanoparticles (Ag NPs). The coatings were synthesized via a sol-gel technique by combining colloidal Ag NPs with TiO2 and SiO2 sols. The photocatalytic activity was studied through methyl orange decomposition under UV light. Results showed a great increase of photocatalytic activity by Ag NPs doping. The most active photocatalyst corresponded to the Ag-SiO2/TiO2 mesoporous system, associated with the porosity of the coatings and with the decrease of e-h recombination for the presence of Ag NPs. All the TiO2 coatings showed a strong bactericidal activity against planktonic forms of Gram-negative (enterohemorrhagic Escherichia coli) and Gram-positive (Listeria monocytogenes) pathogens, as well as a strong germicidal effect against deadly spores of human gas gangrene- and anthrax-producing bacteria (Clostridium perfringens and Bacillus anthracis, respectively). The bactericidal and sporocidal activity was improved by doping the coatings with Ag NPs, even more when nanoparticles were in the outer layer of TiO2, because they are more accessible to the environment. The mechanisms responsible for the increase of photocatalytic and bactericidal behaviors related to Ag NP doping were studied by spectroscopic ellipsometry, UV-vis spectroscopy, photoluminescence and anodic stripping voltammetry. It was found that the separation of the electron-hole pair contributed to the enhancement of photocatalysis, whereas the effect of the local electric field reinforcement was probably present. A possible involvement of a decrease of band-gap energy and dispersion by silver nanoparticles is ruled out. bactericidal efficacy was increased by Ag(+) ion release. Overall, the results included in this article show that the architecture of the films may tune photocatalytic and bactericidal properties.


Assuntos
Materiais Revestidos Biocompatíveis , Nanopartículas Metálicas , Processos Fotoquímicos , Prata/química , Titânio/química , Catálise , Microscopia Eletrônica de Transmissão
18.
Mol Microbiol ; 87(2): 348-67, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23170957

RESUMO

During sporulation in Bacillus subtilis, the committed-cell undergoes substantial membrane rearrangements to generate two cells of different sizes and fates: the mother cell and the forespore. Here, we demonstrate that the master transcription factor Spo0A reactivates lipid synthesis during development. Maximal Spo0A-dependent lipid synthesis occurs during the key stages of asymmetric division and forespore engulfment. Spo0A reactivates the accDA operon that encodes the carboxylase component of the acetyl-CoA carboxylase enzyme, which catalyses the first and rate-limiting step in de novo lipid biosynthesis, malonyl-CoA formation. The disruption of the Spo0A-binding box in the promoter region of accDA impairs its transcriptional reactivation and blocks lipid synthesis. The Spo0A-insensitive accDA(0A) cells were proficient in planktonic growth but defective in sporulation (σ(E) activation) and biofilm development (cell cluster formation and water repellency). Exogenous fatty acid supplementation to accDA(0A) cells overcomes their inability to synthesize lipids during development and restores sporulation and biofilm proficiencies. The transient exclusion of the lipid synthesis regulon from the forespore and the known compartmentalization of Spo0A and ACP in the mother cell suggest that de novo lipid synthesis is confined to the mother cell. The significance of the Spo0A-controlled de novo lipid synthesis during B. subtilis development is discussed.


Assuntos
Bacillus subtilis/crescimento & desenvolvimento , Bacillus subtilis/metabolismo , Proteínas de Bactérias/metabolismo , Biofilmes/crescimento & desenvolvimento , Ácidos Graxos/biossíntese , Esporos Bacterianos/crescimento & desenvolvimento , Esporos Bacterianos/metabolismo , Fatores de Transcrição/metabolismo , Regulação Bacteriana da Expressão Gênica
19.
J Bacteriol ; 190(1): 48-60, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17981974

RESUMO

Clostridium perfringens is an anaerobic, gram-positive, spore-forming bacterium responsible for the production of severe histotoxic and gastrointestinal diseases in humans and animals. In silico analysis of the three available genome-sequenced C. perfringens strains (13, SM101, and ATCC13124) revealed that genes that encode flagellar proteins and genes involved in chemotaxis are absent. However, those strains exhibit type IV pilus (TFP)-dependent gliding motility. Since carbon catabolite regulation has been implicated in the control of different bacterial behaviors, we investigated the effects of glucose and other readily metabolized carbohydrates on C. perfringens gliding motility. Our results demonstrate that carbon catabolite regulation constitutes an important physiological regulatory mechanism that reduces the proficiencies of the gliding motilities of a large number of unrelated human- and animal-derived pathogenic C. perfringens strains. Glucose produces a strong dose-dependent inhibition of gliding development without affecting vegetative growth. Maximum gliding inhibition was observed at a glucose concentration (1%) previously reported to also inhibit other important behaviors in C. perfringens, such as spore development. The inhibition of gliding development in the presence of glucose was due, at least in part, to the repression of the genes pilT and pilD, whose products are essential for TFP-dependent gliding proficiency. The inhibitory effects of glucose on pilT and pilD expression were under the control of the key regulatory protein CcpA (catabolite control protein A). The deficiency in CcpA activity of a ccpA knockout C. perfringens mutant strain restored the expressions of pilT and pilD and gliding proficiency in the presence of 1% glucose. The carbon catabolite repression of the gliding motility of the ccpA mutant strain was restored after the introduction of a complementing plasmid harboring a wild-type copy of ccpA. These results point to a central role for CcpA in orchestrating the negative effect of carbon catabolite regulation on C. perfringens gliding motility. Furthermore, we discovered a novel positive role for CcpA in pilT and pilD expression and gliding proficiency in the absence of catabolite regulation. Carbon catabolite repression of gliding motility and the dual role of CcpA, either as repressor or as activator of gliding, are analyzed in the context of the different social behaviors and diseases produced by C. perfringens.


Assuntos
Clostridium perfringens/fisiologia , Clostridium perfringens/patogenicidade , Fímbrias Bacterianas/fisiologia , Anaerobiose , Animais , Proteínas de Bactérias/genética , Quimiotaxia/genética , Quimiotaxia/fisiologia , Clonagem Molecular , Clostridium perfringens/efeitos dos fármacos , Clostridium perfringens/genética , Primers do DNA , Proteínas de Ligação a DNA/genética , Deleção de Genes , Teste de Complementação Genética , Glucose/farmacologia , Glucuronidase/genética , Glucuronidase/metabolismo , Humanos , Plasmídeos , Proteínas Repressoras/genética
20.
J Bacteriol ; 188(12): 4442-52, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16740951

RESUMO

Cell-to-cell communication in bacteria is mediated by quorum-sensing systems (QSS) that produce chemical signal molecules called autoinducers (AI). In particular, LuxS/AI-2-dependent QSS has been proposed to act as a universal lexicon that mediates intra- and interspecific bacterial behavior. Here we report that the model organism Bacillus subtilis operates a luxS-dependent QSS that regulates its morphogenesis and social behavior. We demonstrated that B. subtilis luxS is a growth-phase-regulated gene that produces active AI-2 able to mediate the interspecific activation of light production in Vibrio harveyi. We demonstrated that in B. subtilis, luxS expression was under the control of a novel AI-2-dependent negative regulatory feedback loop that indicated an important role for AI-2 as a signaling molecule. Even though luxS did not affect spore development, AI-2 production was negatively regulated by the master regulatory proteins of pluricellular behavior, SinR and Spo0A. Interestingly, wild B. subtilis cells, from the undomesticated and probiotic B. subtilis natto strain, required the LuxS-dependent QSS to form robust and differentiated biofilms and also to swarm on solid surfaces. Furthermore, LuxS activity was required for the formation of sophisticated aerial colonies that behaved as giant fruiting bodies where AI-2 production and spore morphogenesis were spatially regulated at different sites of the developing colony. We proposed that LuxS/AI-2 constitutes a novel form of quorum-sensing regulation where AI-2 behaves as a morphogen-like molecule that coordinates the social and pluricellular behavior of B. subtilis.


Assuntos
Bacillus subtilis/citologia , Bacillus subtilis/fisiologia , Proteínas de Bactérias/fisiologia , Bacillus subtilis/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biofilmes/crescimento & desenvolvimento , Liases de Carbono-Enxofre , Proteínas de Ligação a DNA/genética , Regulação Bacteriana da Expressão Gênica , Homosserina/análogos & derivados , Homosserina/genética , Homosserina/metabolismo , Lactonas/metabolismo , Locomoção , Substâncias Luminescentes/metabolismo , Transdução de Sinais , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...