Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 18(2): e0281805, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36795673

RESUMO

In perennial plants such as pecan, once reproductive maturity is attained, there are genetic switches that are regulated and required for flower development year after year. Pecan trees are heterodichogamous with both pistillate and staminate flowers produced on the same tree. Therefore, defining genes exclusively responsible for pistillate inflorescence and staminate inflorescence (catkin) initiation is challenging at best. To understand these genetic switches and their timing, this study analyzed catkin bloom and gene expression of lateral buds collected from a protogynous (Wichita) and a protandrous (Western) pecan cultivar in summer, autumn and spring. Our data showed that pistillate flowers in the current season on the same shoot negatively impacted catkin production on the protogynous 'Wichita' cultivar. Whereas fruit production the previous year on 'Wichita' had a positive effect on catkin production on the same shoot the following year. However, fruiting the previous year nor current year pistillate flower production had no significant effect on catkin production on 'Western' (protandrous cultivar) cultivar. The RNA-Seq results present more significant differences between the fruiting and non-fruiting shoots of the 'Wichita' cultivar compared to the 'Western' cultivar, revealing the genetic signals likely responsible for catkin production. Our data presented here, indicates the genes showing expression for the initiation of both types of flowers the season before bloom.


Assuntos
Carya , Carya/genética , Cone de Plantas , Flores/genética , Frutas , Perfilação da Expressão Gênica
2.
Plants (Basel) ; 12(2)2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36679073

RESUMO

Carya illinoinensis (Wangenh.) K.Koch production has expanded beyond the native distribution as the genetic diversity of the species, in part, has allowed the trees to grow under broad geographic and climatic ranges. Research in other plant species has demonstrated that the phytobiome enhances their ability to survive and thrive in specific environments and, conversely, is influenced by the prevailing environment and plant genetics, among other factors. We sought to analyze the microbiota of pecan seedlings from the controlled cross 'Lakota' × 'Oaxaca' that were made in Georgia and Texas, respectively, to determine if the maternal geographical origin influences the microbiome of the resulting progeny. No significant differences in bacterial communities were observed between the seeds obtained from the two different states (p = 0.081). However, seed origin did induce significant differences in leaf fungal composition (p = 0.012). Results suggest that, in addition to some environmental, epigenetics, or host genetic components, ecological processes, such as dispersal mechanisms of the host, differentially impact the pecan microbiome, which may have ramifications for the health of trees grown in different environments. Future studies on the role of the microbiome in plant health and productivity will aid in the development of sustainable agriculture for improved food security.

3.
Front Plant Sci ; 13: 780335, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35463450

RESUMO

Pecan bacterial leaf scorch, caused by Xylella fastidiosa subsp. multiplex, is an economically significant disease of pecan with known detrimental effects on the yield of susceptible cultivars. In this study, endosperm was harvested from developing pecan seeds, and direct qPCR and sequencing were used to detect and confirm the presence of X. fastidiosa. DNA was isolated from mature seeds originating from seven trees, revealing a positivity rate up to 90%, and transmission of X. fastidiosa from infected seed to the germinated seedlings was found to be over 80%. Further epidemiological analyses were performed to determine where X. fastidiosa localizes in mature seed and seedlings. The highest concentrations of X. fastidiosa DNA were found in the hilum and outer integument of the seeds and the petioles, respectively. High-, medium-, and low-density seeds were harvested to determine the impact of the bacterium on seed density and seedling growth rate. The growth rate of seedlings originating from low-density seeds was significantly reduced compared to the medium- and high-density seeds. Despite the increased growth and germination rates, the high-density seed group had a greater proportion of samples that tested positive for the presence of X. fastidiosa by qPCR. The results demonstrate the ability of X. fastidiosa to colonize developing seeds and be efficiently transmitted from well-developed seeds to germinated seedlings. Continued research is needed to understand the plant-microbe interactions involved in the colonization of pecan seeds by X. fastidiosa and to develop effective phytosanitary approaches to reduce the risks posed by seed transmission.

4.
Appl Plant Sci ; 10(1): e11455, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35228913

RESUMO

PREMISE: DNA-based species identification is critical when morphological identification is restricted, but DNA-based identification pipelines typically rely on the ability to compare homologous sequence data across species. Because many clades lack robust genomic resources, we present here a bioinformatics pipeline capable of generating genome-wide single-nucleotide polymorphism (SNP) data while circumventing the need for any reference genome or annotation data. METHODS: Using the SISRS bioinformatics pipeline, we generated de novo ortholog data for the genus Carya, isolating sites where genetic variation was restricted to a single Carya species (i.e., species-informative SNPs). We leveraged these SNPs to identify both full-species and hybrid Carya specimens, even at very low sequencing depths. RESULTS: We identified between 46,000 and 476,000 species-identifying SNPs for each of eight diploid Carya species, and all species identifications were concordant with the species of record. For all putative F1 hybrid specimens, both parental species were correctly identified in all cases, and more punctate patterns of introgression were detectable in more cryptic crosses. DISCUSSION: Bioinformatics pipelines that use only short-read sequencing data provide vital new tools enabling rapid expansion of DNA identification assays for model and non-model clades alike.

5.
Nat Commun ; 12(1): 4125, 2021 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-34226565

RESUMO

Genome-enabled biotechnologies have the potential to accelerate breeding efforts in long-lived perennial crop species. Despite the transformative potential of molecular tools in pecan and other outcrossing tree species, highly heterozygous genomes, significant presence-absence gene content variation, and histories of interspecific hybridization have constrained breeding efforts. To overcome these challenges, here, we present diploid genome assemblies and annotations of four outbred pecan genotypes, including a PacBio HiFi chromosome-scale assembly of both haplotypes of the 'Pawnee' cultivar. Comparative analysis and pan-genome integration reveal substantial and likely adaptive interspecific genomic introgressions, including an over-retained haplotype introgressed from bitternut hickory into pecan breeding pedigrees. Further, by leveraging our pan-genome presence-absence and functional annotation database among genomes and within the two outbred haplotypes of the 'Lakota' genome, we identify candidate genes for pest and pathogen resistance. Combined, these analyses and resources highlight significant progress towards functional and quantitative genomics in highly diverse and outbred crops.


Assuntos
Carya/genética , Cromossomos , Genoma de Planta , Genômica , Melhoramento Vegetal , Diploide , Resistência à Doença/genética , Variação Genética , Genótipo , Haplótipos , Fenótipo
6.
Mycologia ; 113(3): 586-598, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33783338

RESUMO

Neofusicoccum species are endophytes and pathogens of woody hosts and members of the Botryosphaeriaceae. Leaf dieback is a new disease resulting in death of compound leaves and extensive defoliation of pecan trees (Carya illinoinensis) throughout the southeastern United States. Currently, the disease is consistently most severe on trees that are not managed with fungicides for pecan scab. Preliminary observations of the fungus isolated from symptomatic leaves indicated that it was a member of the genus Neofusicoccum. Our objectives were to confirm that this is the causal organism of leaf dieback disease of pecan and to determine whether this disease is caused by a new or previously described species of Neofusicoccum. Morphological observations of pure cultures, conidiomata, conidiogenous cells, and conidia were consistent with members of the genus Neofusicoccum. Using Koch's postulates, we established that Neofusicoccum sp. isolated from symptomatic leaves caused the disease. We sequenced the internal transcribed spacer of the rDNA (ITS), elongation factor 1-α (EF1-α), the second largest subunit of RNA polymerase II (RPB2), and ß-tubulin (TUB2) of 11 isolates collected from Georgia and Texas. Phylogenetic and network analyses of these sequences combined with publicly available sequences of 40 members of the N. parvum-N. ribis species complex and the outgroup N. australe revealed that this fungus is a member of the species complex but is genetically distinct from previously described species. We determined that leaf dieback of pecan is caused by a novel species, named herein N. caryigenum.


Assuntos
Carya , DNA Fúngico/genética , Georgia , Filogenia , Folhas de Planta
7.
Gigascience ; 8(5)2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-31049561

RESUMO

BACKGROUND: Pecan (Carya illinoinensis) and Chinese hickory (C. cathayensis) are important commercially cultivated nut trees in the genus Carya (Juglandaceae), with high nutritional value and substantial health benefits. RESULTS: We obtained >187.22 and 178.87 gigabases of sequence, and ∼288× and 248× genome coverage, to a pecan cultivar ("Pawnee") and a domesticated Chinese hickory landrace (ZAFU-1), respectively. The total assembly size is 651.31 megabases (Mb) for pecan and 706.43 Mb for Chinese hickory. Two genome duplication events before the divergence from walnut were found in these species. Gene family analysis highlighted key genes in biotic and abiotic tolerance, oil, polyphenols, essential amino acids, and B vitamins. Further analyses of reduced-coverage genome sequences of 16 Carya and 2 Juglans species provide additional phylogenetic perspective on crop wild relatives. CONCLUSIONS: Cooperative characterization of these valuable resources provides a window to their evolutionary development and a valuable foundation for future crop improvement.


Assuntos
Carya/genética , Evolução Molecular , Genoma de Planta/genética , Nozes/genética , Anotação de Sequência Molecular , Filogenia
8.
J Appl Microbiol ; 123(2): 491-497, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28561954

RESUMO

AIMS: To determine whether Venturia effusa, the causative fungal agent of pecan scab, harbours a bacterial symbiont. METHODS AND RESULTS: Venturia effusa isolates were maintained on potato dextrose agar amended with antibiotics (chloramphenicol (100 µg ml-1 ) and tetracycline 100 (µg ml-1 )). Genomic DNA extracted from mycelia was used to target eubacterial 16S rDNA. A 1·4-kbp PCR amplified product using 16S rDNA degenerate primers was cloned, sequenced and found to have 99% identities with Actinobacteria representatives. Attempts to culture the detected bacteria apart from the fungus following agitation and fungal cell lysis were unsuccessful using standard bacteriological media under either aerobic or anaerobic conditions. Fungal structures were visualized using scanning electron microscopy and putative bacterial formations associated with the fungal mycelia were observed. Fluorescence in situ hybridization using 16S rDNA oligonucleotides illuminated spores and portions of the hyphae. CONCLUSIONS: This is the first report to provide both molecular microbiological and microscopic evidence in support of the hypothesis that V. effusa harbours endosymbiotic bacteria. SIGNIFICANCE AND IMPACT OF THE STUDY: Findings from this research contribute fundamental information regarding the biology of the fungus that may ultimately lead to identifying a target of the pathogen for use in management and/or avoidance strategies.


Assuntos
Ascomicetos/fisiologia , Bactérias/isolamento & purificação , Carya/microbiologia , Doenças das Plantas/microbiologia , Simbiose , Ascomicetos/genética , Ascomicetos/isolamento & purificação , Bactérias/classificação , Bactérias/genética , Fenômenos Fisiológicos Bacterianos , Primers do DNA/genética , DNA Bacteriano/genética , DNA Ribossômico/genética , Hibridização in Situ Fluorescente , Reação em Cadeia da Polimerase/métodos , RNA Ribossômico 16S/genética
9.
Springerplus ; 5(1): 1860, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27822436

RESUMO

'Jones Hybrid' hickory is an accession in the National Collection of Genetic Resources for Pecans and Hickories for which information about origin, identity and characteristics is very incomplete. Phenotypic and genetic profiles, when examined in the context of historic literature, provide evidence that the accession in question is 'Siers' a cultivar of Carya × laneyi (an interspecific hybrid between C. ovata and C. cordiformis). The accession has traits that make it interesting in the pecan breeding program, with potential for both rootstock and scion development. The tall, slender tree form of 'Jones Hybrid' is a trait that could be valuable in commercial pecan cultivars, allowing increased tree densities and reducing the need for expensive hedging operations. Tree size reduction is a goal to be pursued in scion selection and rootstock development, with each goal requiring assessment of reproductive potential of the accession.

10.
Plant Dis ; 97(5): 601-607, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-30722192

RESUMO

Thousand cankers disease (TCD) of walnut is a result of feeding in the phloem by the walnut twig beetle (WTB), Pityophthorus juglandis, and subsequent canker formation caused by Geosmithia morbida around galleries. TCD has caused extensive morbidity and mortality to Juglans nigra in the western United States and, in 2010, was discovered in the eastern United States, where the tree is a highly valuable timber resource. WTB and G. morbida also have been found in J. regia orchards throughout major production areas in California, and the numbers of damaged trees are increasing. We tested the susceptibility of walnut and hickory species to G. morbida in greenhouse and field studies. Carya illinoinensis, C. aquatica, and C. ovata were immune. All walnut species tested, including J. ailantifolia, J. californica, J. cinerea, J. hindsii, J. major, J. mandshurica, J. microcarpa, J. nigra, and J. regia, developed cankers following inoculation with G. morbida. J. nigra was the most susceptible, whereas J. major, a native host of the WTB and, presumably, G. morbida, had smaller and more superficial cankers. Canker formation differed among maternal half-sibling families of J. nigra and J. cinerea, indicating genetic variability in resistance to G. morbida. Our inoculation studies with G. morbida have corroborated many of the field observations on susceptibility of walnut and hickory species to TCD, although the ability of the WTB to successfully attack and breed in walnut is also an important component in TCD resistance.

11.
Vet Microbiol ; 95(3): 211-25, 2003 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-12935748

RESUMO

There has been strong debate as to whether feeding cattle hay prior to slaughter will reduce the number and/or virulence of Escherichia coli O157:H7 in the bovine gastrointestinal tract (GIT). This study addressed this issue by comparing numbers, persistence, and acid resistance of generic coliforms and E. coli O157:H7 from various gastrointestinal tract sites of cattle fed grain or hay. Mature Angus steers, doubly cannulated into the rumen and duodenum were inoculated with E. coli O157:H7. Aliquots of digesta from the rumen, duodenum, and rectum were cultured directly or acid shocked (pH 2.0) and then cultured to determine acid resistance. The culture technique used was as sensitive as standard immunomagnetic bead separation protocols. E. coli O157:H7 from hay-fed or grain-fed cattle were similarly acid resistant in all GIT locations. In contrast, generic coliforms from the rumen and rectum of hay-fed animals were more sensitive to an acid shock than coliforms from those GIT locations in grain-fed animals. E. coli O157:H7 colonized the most distal region of the GIT and was not consistently cultured from the rumen or the duodenum. Numbers in the upper GIT did not predict numbers or persistence of E. coli O157:H7 in rectal samples. Grain-feeding or hay-feeding did not affect survival of E. coli O157:H7 in the rumen, nor its passage through the abomasum (pH 2.0) to the duodenum. These data show that generic coliforms behave differently in the bovine host than E. coli O157:H7 and that E. coli O157:H7 acid resistance was independent of animal diet.


Assuntos
Ração Animal , Bovinos/microbiologia , Sistema Digestório/microbiologia , Escherichia coli O157/efeitos dos fármacos , Animais , Bovinos/metabolismo , Estudos Cross-Over , Sistema Digestório/metabolismo , Grão Comestível/metabolismo , Enterobacteriaceae/crescimento & desenvolvimento , Escherichia coli O157/crescimento & desenvolvimento , Fezes/microbiologia , Feminino , Concentração de Íons de Hidrogênio , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...